
1 INTRODUCTION 
Landslide risk is defined as the expected number of 
lives lost, persons injured, damage to property and 
disruption of economic activity due to a particular 
landslide hazard for a given area and reference period 
(Varnes, 1984). When dealing with physical losses, 
(specific) risk can be quantified as the product of 
vulnerability, cost or amount of the elements at risk 
and the probability of occurrence of the event. When 
we look at the total risk, the hazard is multiplied with 
the expected losses for all different types of elements 
at risk (= vulnerability * amount), and this is done for 
all hazard types. Schematically, this can be repre-
sented by the following formula: 
 
Risk = ΣΣΣΣ (H * ΣΣΣΣ( V * A))  
 
Where: 
H = Hazard expressed as probability of occurrence 
within a reference period (e.g., year) 
V = Physical vulnerability of a particular type of ele-
ment at risk (from 0 to 1) 
A = Amount or cost of the particular elements at risk 
(e.g., number of buildings, cost of buildings, number 
of people, etc.). Theoretically, the formula would re-
sult in a so-called risk curve, containing the relation 
between all events with different probabilities, and 
the corresponding losses. 

Out of the factors mentioned in the formula for 
risk assessment, the hazard component is by far the 

most difficult to assess, due to the absence of a clear 
magnitude-frequency relation at a particular location, 
although such relations can be made over larger ar-
eas. Furthermore, the estimation of both magnitude 
and probability of landsliding requires a large amount 
of information on the following aspects: 

• Surface topography; 
• Subsurface stratigraphy; 
• Subsurface water levels, and their variation in 

time;  
• Shear strength of materials through which the 

failure surface may pass,  
• Unit weight of the materials overlying poten-

tial failure planes; 
• The intensity and probability of triggering 

factors, such as rainfall and earthquakes. 
All of these factors, required to calculate the sta-

bility of individual slopes, have a large spatial varia-
tion, and are only partly known, at best. If all these 
factors would be known in detail it would be possible 
to determine which slopes would generate landslides 
of specific volumes and with specific runout zones 
for a given period of time.  

 
Risk analysis, assessment and management require a 
large amount of information. Relatively large vol-
umes of multi-disciplinary and technical information 
have to be collected, processed, analyzed, and even-
tually communicated to a broad range of users under 
quite different conditions, ranging from planning and 
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regulatory activities to emergency management 
(Fedra, 1998). Modern information technology pro-
vides some of the tools to support these activities, 
leading to the development of risk information sys-
tems that can be used for both analyzing risk and 
evaluating the consequences of decisions that have to 
be taken to mitigate or reduce risk at both short term 
(emergency planning) and long term (development 
planning).  

 
The aim of this paper is to give an overview of recent 
developments in the use of Geographical Information 
Systems and Earth Observation which have been ap-
plied for improved landslide inventory mapping, 
landslide susceptibility and hazard assessment, ele-
ments at risk mapping, and finally landslide vulner-
ability and risk assessment. This paper does not in-
tend to give an overview of the various methods for 
landslide hazard and risk assessment. For overview 
publications regarding landslide hazard methods the 
reader is referred to publications such as Varnes 
(1984), Soeters and Van Westen (1996), Aleotti and 
Chowdury (1999) and Guzzetti et al. (1999; 2000). 
The fairly recent topic of landslide risk assessment is 
discussed by Einstein (1988), Chowdhury (1988), 
Fell (1994), Fell and Hartford (1997), Hungr et al. 
(1999), Hearn and Griffiths (2001) and Dai et al. 
(2002), collections of publications on risk assessment 
can be found in Turner and Schuster, (1996), Sen-
nestet, (1996), Cruden and Fell (1997), and McInnes 
and Jakeways (2002). This paper is partly based on 
an extensive literature search using a Web-based 
search engine (Geobase) for scientific journal articles 
basically from the past 8 years. 

2 GEO-INFORMATION SCIENCE AND EARTH 
OBSERVATION FOR LANDSLIDE HAZARD 
AND RISK ASSESSMENT 

Geo-information science and earth observation con-
sist of a combination of tools and methods for the 
collection, storage and processing of geo-spatial data 
and for the dissemination and use of these data and 
of services based on these data. This implies the de-
velopment and application of concepts for spatial 
data modeling, for information extraction from 
measuring and image data, and for the processing, 
analysis, dissemination, presentation and use of geo-
spatial data. It also implies the development and im-
plementation of concepts for the structuring, organi-
zation and management of geo-spatial production 
processes in an institutional setting.  
Due to the diversity and large volumes of data 
needed, and the complexity in the analysis proce-
dures, quantitative landslide risk assessment has only 
become feasible in the last decade or so, due to the 
developments in the field of Geo-Information sci-
ence. When dealing with GIS-based landslide hazard 
assessment, elements at risk mapping, and vulnerabil-

ity/risk analysis, experts from a wide range of disci-
plines, such as earth sciences, hydrology, information 
technology, urban planning, architecture, civil engi-
neering, economy and social sciences need to be in-
volved. 
Carrara et al. (1999), in an interesting overview pa-
per on the use of GIS technology for the prediction 
and monitoring of landslide hazards, indicated some 
of the negative aspects of the extensive use of GIS in 
the process, such as: 

• Computer-generated results are considered to 
be more objective and accurate than products de-
rived by experts in the conventional way through 
extensive field mapping; 

• The use of GIS and the production of less accu-
rate hazard maps by users that are not experts in 
earth sciences; 

• The increased focus on the use of new compu-
tational techniques for landslide hazard assess-
ment, and less interest on the collection of reliable 
data; 

For the average earth scientist it is difficult to keep 
up with the rapid developments in the field of Geo-
information Science and Earth Observation. The 
number of new sensors and platforms, and the 
amount of acronyms is overwhelming. Also the 
change of GIS software from one version to the next, 
in which the methods that had been developed earlier 
on do no longer function, because of changes in file 
structure or interface, can be frustrating to many 
earth scientists. Nevertheless, GIS has become an 
almost compulsory tool in landslide hazard and risk 
assessment, and it is the challenge to keep on using it 
as a tool, and not as an objective in itself. When us-
ing GIS, the following components of a landslide risk 
project can be differentiated: data collection, data en-
try, data management, and data modeling. An over-
view of the various aspects related to the use of GIS 
technology in landslide risk assessment is given in 
Figure 1. In the following section a number of spe-
cific aspects will be treated further. 

3 COLLECTING, ENTERING AND ORGANI-
ZATION OF DATA FOR LANDSLIDE RISK 
ANALYSIS.   

In the field of data collection for landslide hazard, 
vulnerability and risk assessment, the developments 
in the fields of Geo-Information Science and Earth 
Observation have shown a major impact in the fields 
of DEM generation, digital mapping and mobile GIS. 

 
 

 
 
     
 



 
 
 
 

 
Figure 1: Different components related to the use of 
Geo-Information tools and methods for risk analy-
sis. 

3.1 DEM Generation 

As topography is one of the major factors in land-
slide risk analysis, the generation of a digital repre-
sentation of the surface elevation, called Digital Ele-
vation Model (DEM), plays a major role. During the 
last 15 years there have been important changes both 
in terms of data availability, as well as in terms of 
software that can be used on normal desktop com-
puters, without extensive skills in photogrammetry. 
Global DEMs are available with a horizontal grid 
spacing of 30 arc seconds (approximately 1 kilome-
ter), such as GLOBE or GTOPO30 (Hastings and 
Dunbar, 1998). GTOPO30 was derived from various 
existing sources of topographic information in both 
raster and vector format. The GTOPO30 data set 
was completed in 1996 and was developed by the 
USGS. It has an overall vertical accuracy of 30 me-
ters. Data can be downloaded from Internet. 

 

 

 

 

3.1.1 SRTM 
The NASA Shuttle Radar Topography Mission 

(SRTM) has gathered topographic data for about 
80% of the Earth’s land surface, in the area between 
60 degrees latitude (Rabus et al., 2003). SRTM used 
the technique of interferometry, in which two radar 
images are taken from different points of the same 
area. Altitude of the surface can be calculated from 
the phase difference in the two images. The SRTM 
radar used two types of frequencies: C-band and X-
band. The C-Band radar data was used by NASA’s 
Jet Propulsion Lab (JPL) to generate DEM, and the 
X-Band by the German Space Agency DLR for de-
tailed DEM generation (Rabus et al. 2003).  These 
data are being distributed through the United States 
Geological Survey's EROS Data Center. The re-
leased SRTM DEMs for the United States are at 30-
meter resolution, and those for the rest of the world 
at 90 meters. As they are very recent, no publications 
were encountered on the use of SRTM DEMs in 
landslide hazard assessment. It is expected that 
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SRTM DEMs will be used extensively in the near fu-
ture in regional scale landslide hazard assessment 
projects in developing countries. Although a resolu-
tion of 90 meter is still not very detailed, and not 
suitable for generating slope maps, it would allow for 
the characterization of the terrain using morphomet-
rical analysis.  

3.1.2 ASTER 
Another source of DEMs is ASTER. The Ad-

vanced Spaceborne Thermal Emission and Reflection 
Radiometer (ASTER) is one of 5 instruments on the 
Terra platform, launched in 1999. One of the added 
benefits of the ASTER system is that it offers stereo-
scopic imagery, as the VNIR subsystem is specifi-
cally designed with a backward-viewing telescope for 
high-resolution (15 meter) stereoscopic observation 
in the along-track direction. Several authors (Toutin 
and Cheng, 2001; Kaab, 2002) report on the genera-
tion of Digital Elevation Models from ASTER im-
ages.  Through the comparison of a DEM derived 
from aerial photographs with one derived from 
ASTER, an accuracy of ± 60 m RMS of the ASTER 
DEM was found for rough high-mountain topogra-
phy, and ± 18 m RMS for moderately mountainous 
terrain (Kaab, 2002). ASTER data is currently one of 
the least expensive types of satellite data available. 
Initially ASTER data could be downloaded for free, 
but now one frame costs around $55. ASTER’s 14 
multi-spectral bands (in the VNIR, SWIR and Ther-
mal IR) and stereo capability facilitate mapping and 
assessment of landslide hazard on a regional scale 
and especially in areas where detailed geological 
maps and topographic maps are not available (Liu et 
al. 2004). Digital Elevation Models from ASTER 
can either be generated by the user, with ground con-
trol points taking by GPS and software such as Erdas 
Imagine Orthobase pro, or can be purchased 
(http://edcdaac.usgs.gov/)  

3.1.3 InSar 
SAR interferometry (InSAR) is gaining increasing 

importance as a technique for rapid and accurate to-
pographic data collection. Synthetic Aperture Radar 
(SAR) images contain both the amplitude and phase 
information of the return signals from the earth sur-
face. SAR interferometry (InSAR) is a technique in 
which two SAR images of the same portion of the 
earth taken from slightly different satellite positions 
are used (Massonnet and Feigl, 1998; Rosen et al., 
2000). Combining the two images results in an inter-
ferogram, which represents the phase difference be-
tween the return signals in the two SAR images, 
which result from topography and from changes in 
the line-of-site distance (range) to the radar due to 
displacement of the surface or change in the propaga-
tion path length. The phase differences can be con-
verted into a DEM if very precise satellite data are 
available. This technique can be applied for measur-

ing displacements at the earth’s surface with very 
high accuracy and for topographic mapping (Mas-
sonnet and Feigl, 1998). A number of spaceborne In-
SAR systems are operational, (ERS, ENVISAT, 
RADARSAT) or in the planning and implementation 
stages and therefore it is important to understand the 
accuracy and limitations of the technique for different 
applications (Crosetto, 2002). For the generation of 
Digital Elevation Models a combination of ascending 
and descending mode data is often used (Pasquali et 
al., 1994), to cover areas affected by foreshortening 
and layover in one image (e.g. ascending mode) by 
data from the other image. The InSAR processing 
involves coregistration of the tandem data, calcula-
tion of the interferometric phase and coherence, 
phase unwrapping and computation of the height. 
Since the phase unwrapping is the most crucial part 
of InSAR processing involving reconstruction of 
phase to extract height information, any error com-
mitted at this stage affects the quality of the DEM 
(Crosetto, 2002). Although in some areas Digital 
Elevation Models (DEM) produced from this tech-
nique are becoming available the generation of Digi-
tal Elevation Models through InSar however is still 
mainly in the development stage, and due to the 
complex technical procedure it is not likely that 
DEM generation from InSar will become a custom 
operation for the average landslide researcher. 
As mentioned earlier the phase difference results 
from topography as well as due to displacement of 
the surface. Therefore, by separating the motion-
related and the topography related phase contribu-
tions, mapping of landslide movements is possible. 
This can be done by differential interferometry (DIn-
SAR) technique using two interferograms of different 
time periods 
In recent years this technique has been used to moni-
tor and measure landslide movements (Fruneau et al., 
1996; Rott et al., 1999; Vietmeier et al., 1999: Ki-
mura and Yamaguchi, 2000; Rizo and Tesauro, 
2000; Squarzoni et al., 2003). Singhroy et al (1998) 
have used both airborne C-band radar data and 
RADARSAT data combined with LANDSAT TM 
data for landslide mapping in several areas in Canada. 
Rott et al. (1999) demonstrated the application of 
radar interferometry to detect slope movements on 
the order of millimeters to centimeters per year in a 
high mountain area above the treeline. The applica-
bility of the DInSar method for detecting slope 
movements in vegetated terrain however is much 
less, due to phase decorrelation and atmospheric dis-
turbances. Bernardino et al (2003) tried to reduce 
these disturbances by using new algorithms for phase 
unwrapping and they compared the results of DinSar 
measurements for the movement of a large landslide 
over a period of several years with the results from 
GPS and Electronic Distance Meter (EDM) meas-
urements. They concluded that the accuracy of dis-
placement values derived from DinSar as compared 



with those from GPS is higher for those places with 
higher coherence, and that values measured at low 
coherence sites should not be used as absolute val-
ues.  Better results can be obtained by carrying out 
measurements on a subset of image pixels corre-
sponding to pointwise stable reflectors (Permanent 
Scatterers, PS) and exploiting long temporal series of 
interferometric data, as demonstrated by Colesanti et 
al (2003) with data from California and landslide ar-
eas near Ancona in Italy. The permanent scatterer 
method however, has the drawback that a large num-
ber of SAR scenes are required and that measure-
ments can only be made for a limited number of 
points in the terrain. Radar interferometry has also 
been applied very successfully on the ground, as 
ground-based interferometry for the monitoring of 
landslides in Italy, as demonstrated by Tarchi et al. 
(2003) and Pieraccini et al. (2003).  

3.1.4 Lidar 
One of the most promising new techniques for 

high accuracy DEMs is Lidar. Lidar is an acronym 
standing for Light Detection and Ranging. It is in lit-
erature also sometimes referred to as Laser altimetry 
(Ackermann, 1999). Lidar is using a pulse laser to 
measure the distance between the sensor and the sur-
face of the Earth (Flood and Gutelius, 1997). The 
position of each measured point is identified using a 
differential GPS and an Inertial Measurement Unit 
(Wehr and Lohr, 1999). Normally Lidar point meas-
urements will render so-called Digital Surface Mod-
els (DSM), which contains information on all objects 
of the Earth’s surface, including buildings, trees etc. 
(Ackermann, 1999). Through sophisticated algo-
rithms, and final manual editing, the landscape ele-
ments are removed and a Digital Terrain Model is 
generated.  The difference between a DSM and the 
Digital Terrain Model (DTM) can also provide very 
useful information, e.g on elements at risk (buildings 
etc. see later section) or the forest canopy height 
(Wehr and Lohr, 1999).  
More and more areas are now mapped using Lidar, 
although this can be said mainly for developed coun-
tries, as the costs of Lidar surveys are still rather 
high. In literature, there are still very few publications 
on the use of Lidar in landslide inventory mapping, 
hazard assessment and elements at risk mapping.  
Most applications reported deal with forest mapping, 
coastal mapping, flood hazard and risk assessment 
and building mapping. Lidar data have been used by 
Montgomery et al. (2000) and Dietrich et al. (2001) 
in the analysis of landslide susceptibility related to 
forest management. McKean and Roering (2004) 
have used Lidar data to measure local topographic 
roughness in order to detect and map large deep-
seated landslide in an area in New Zealand. Crosta 
and Agliardi (2002) used a very detailed DEM (pix-
elsize of 1 meter) made by Lidar-ALTM in combina-
tion with airphoto interpretation, detailed field sur-

veys and geotechnical data in the analysis of the 
movement mechanism of a large rockslide. Haugerud 
et al. (2003) discuss the potential of Lidar for the 
mapping of Geomorphological features, such as land-
slides, faultscarps, uplifted beaches and periglacial- 
and glacial landforms in a forested area Northwest of 
Seatle.  Norheim et al. (2002) made an extensive 
comparison of DEMs derived from Lidar and air-
borne InSar for the same area and concluded that the 
accuracy of the Lidar DEM was far better, and that is 
was comparable in accuracy and more ecomical as 
compared with a DEM derived by photogrammetri-
cal techniques from aerial photographs.  
Also terrestrial laser scanning methods have been de-
veloped, and successfully used in the characterization 
of the 3-D structure of landslides or rockslopes 
(Rowlands et al., 2003) 

3.2 Landslide mapping from remotely sensed 
images 

In this section some of the recent developments in 
the use of remotely sensed images for landslide in-
ventory mapping will be discussed. Overview of ear-
lier work on this topic can be found in McKean et al. 
(1991), Mantovani et al. (1996), Soeters and Van 
Westen (1996) and CEOS (2001).  
 

3.2.1 Higher spatial resolution 
In the last decades the use of satellite data has be-

come a normal input into landslide hazard assessment 
projects. Until recently the technology for this use of 
satellite remote sensing data for identification and 
mapping of small-scale slope failures was not yet 
available. However, now there is a potential value for 
the application of multispectral and panchromatic 
data with up to 1-meter spatial resolution (Singhroy 
et al., 2000).  LANDSAT data has remained quite 
popular for the mapping of landslide areas, especially 
in those situations where unvegetated landslide area 
can be differentiated spectrally from the rest of the 
areas (Honda et al., 2002). Also higher resolution 
imagery, such as SPOT (Yamaguschi et al., 2003) 
and IRS-1C (Nagarajan et al., 1998) has been used 
for change detection and landslide mapping. There 
are not so many authors reporting on the use of very 
high-resolution imagery, such as IKONOS or Quick-
bird in landslide inventory and hazard assessment.  
De la Ville et al. (2002) have used IKONOS pan-
chromatic images for the mapping of landslides and 
debris flows in six mountain catchments in Venezuela 
after a major rainstorm event.  Petley et al. (2002) 
have used IKONOS data for landslide inventory 
mapping and compared the results with LANDSAT 
ETM+ data. Hervas et al. (2003) discussed a method 
for automatic change detection based on high-
resolution imagery, which are suitably pre-processed 
(geometrically registered and radiometrically normal-



ized) for the Tessina landslide in Northern Italy, near 
Belluno. Airborne Thematic Mapper (ATM) imagery 
has also been used in the mapping of landslides 
(Whitworth et al., 2001) 

3.2.2 Higher spectral resolution 
 
In another rapidly developing field of earth obser-

vation, that of hyperspectral remote sensing, limited 
work has been done sofar to explore the possibilities 
of the available sensors for landslide inventory map-
ping. Hyperspectral remote sensing, or imaging spec-
troscopy, consists of acquiring images in many 
(>100) narrow, contiguous spectral bands, from 
which a continuous spectrum is obtained for each 
pixel, instead of only broad information in a few wide 
spectral bands. Hyperspectral images enable detailed 
spectral identification of minerals, rocks, soils and 
vegetation types (Curran, 2001) at the surface. Spec-
tra from airborne systems such as the Airborne Visi-
ble Infrared Imaging Spectrometer (AVIRIS) and 
Hyperspectral Mapper (HyMap) have been used to 
successfully map soiltypes and swelling clays 
(Chabrillat et al, 2002). Airborne hyperspectral data 
are available for limited parts of the world. Space-
borne imaging spectrometers are available, such as 
the ASTER and MODIS on board the EOS-AM1, 
and the MERIS on ENVISAT. The spatial resolution 
of these is still too general in order to be useful for 
landslide detection, with the exception of ASTER, al-
though it can be used for soiltype mapping (van der 
Meer et al., 1999). ASTER has three spectral bands 
in the visible near-infrared (VNIR), six bands in the 
short-wave infrared (SWIR), and five bands in the 
thermal infrared (TIR) regions, with 15, 30, and 90 
meters ground resolution respectively. This combina-
tion of wide spectral coverage and high spatial reso-
lution allows ASTER to discriminate amongst a large 
variety of surface materials, ideal for geological stud-
ies. 

3.2.3 Digital techniques for landslide change de-
tection 

Despite the theoretical availability of high-
resolution satellite images, aerial photographs are 
used more extensively for landslide studies because 
they have been in existence for a long time and have 
a suitable spatial resolution.  Techniques for change 
detection using digital aerial photos are often based 
on the generation of high accurate orthophotos, us-
ing high precision GPS control points, for images 
from different periods. A detailed procedure is given 
in Casson et al. (2003) with a multi-temporal exam-
ple from the La Clapiere landslide in France. Hervas 
et al. (2003), and Van Westen and Lulie (2003) have 
made similar attempts for the Tessina landslide in It-
aly. Powers et al. (1996) developed a digital method 
for visual comparison between two sets of multi-
temporal aerial photographs, of the active portion of 

the Slumgullion earthflow in Colorado, to determine 
horizontal displacement vectors from the movements 
of visually identifiable objects, such as trees and large 
rocks. Baum et al. (1998) report on the result of dis-
placement gradients obtained through photogram-
metrical work of multi-temporal aerial photos in 
Honolulu, Hawaii. Maas and Kersten (1997) present 
two practical studies on the helicopter-based use of a 
high-resolution digital still-video camera for digital 
aerotriangulation and the automatic generation of 
digital elevation models and orthophotos. Test re-
gions were an alpine village and a landslide area in 
Switzerland. 

3.2.4 Digital stereo image interpretation 
Conventional landslide inventory mapping from 

aerial photographs has always been done using hard-
copy stereo photos under a mirror stereoscope, 
through the drawing of the interpretation on a sheet 
of tracing paper. The interpretation then had to be 
digitized, converted from the central projection of 
the photograph into an orthogonal projection, and 
glued and matched with the interpretation of 
neighboring photos. Nowadays the interpretation of 
stereo images can be done digitally, using two 
scanned stereo images. These images could be the 
two scanned hardcopy airphoto’s which form a 
stereopair. However, with the current GIS and image 
processing software such as ERDAS StereoAnalyst 
or ILWIS, it is also possible to generate a stereopair 
out of one orthorectified image and a DEM. This is 
especially useful in those cases where the original im-
age data is only available monoscopically, such as in 
the case of LANDSAT data. Several techniques can 
be used to visualize the digital stereo images, such as 
anaglyph, chromadepth, polarized light, or through 
the use of a screen stereoscope, which is mounted on 
the computer screen (see figure 2).  

 
 
Figure 2: screen stereoscope for digital stereo interpre-
tation (source: http://www.stereoaids.com.au) 
 

 



The advantage of anaglyphs is that viewing glasses 
are cheap and widely available. The disadvantage is 
that for color images the colors are different from the 
original ones. Anaglyph images can be generated by 
merging two scanned stereo airphotos in red and 
green colors using a photo editing software. They 
can also be generated using special software from a 
single image combined with a Digital Elevation 
Model. 

3.3 Digital landslide data collection in the field 

For image interpretation and field mapping of 
landslides the use of checklists for standardized data 
collection is an important, but also time-consuming 
component (Van Westen, 1993). Hard copy check-
lists and photointerpretation maps were used before, 
and had to be manually digitized later. With the use 
of mobile GIS this process can be speeded up con-
siderably. Several methods for digital field data col-
lection have been developed. A number of software 
packages have been specifically developed for digital 
geological field data collection, such as the FieldLog 
software, developed by the Canadian Geological 
Survey  (Brodaric, 1997; 2000), the PenMap system 
(Kramer, 2000) developed by the University of Cali-
fornia, and the GSMCAD system (Williams, 1997) 
which is a Microsoft Windows based program devel-
oped by the US Geological Survey. Other, more ge-
neric systems for mobile GIS are MapLT, Pocket-
GIS, and the ArcPad software from ESRI, which is 
the most convenient one when working with ArcGIS. 
The input application can be made on a desktop PC 
and loaded into a palmtop. The software works with 
vector data (shape files) and raster data (JPEG, 
MrSID).  The software runs on laptops, tablet pen 
computers, palm top computers which operate in a 
Windows CE environment and personal data assis-
tants (PDA) operating in Palm OS. The system is in-
tegrated with a GPS system. A simple structure for a 
mobile GIS interface and the landslide attributes that 
are collected is given in figure 3. 

3.4 Elements at risk mapping. 

In order to be able to make an adequate landslide 
risk assessment information should be collected on 
the elements at risk. Elements at risk refer to the 
population, buildings, civil engineering works, eco-
nomic activities, public services, utilities and infra-
structure, etc., that are at risk in a given area 
(AGSO, 2001). Each of these elements at risk has its 
own characteristics, which can be spatial (related to 
the location in relation to the hazard), temporal (such 
as the population, which will differ in time at a cer-
tain location) and thematic characteristics (such as 
the material type of buildings, or the age distribution 
of the population).  

Elements at risk inventories can be carried out at 
various levels of detail, depending on the requirement 
of the study. In urban and rural areas the detail of in-
ventory will also differ. Normally such an inventory 
is time consuming and expensive. Furthermore, such 
an inventory is not only made for landslide risk analy-
sis, but can be used in more development planning 
processes and can also be related to cadastral infor-
mation systems (Montoya, 2000). 
 

 
Figure 3:  Top: three input screens of the ArcPad 
application for digital landslide data collection. Be-
low: structure of the tables and names of fields used 
in the database. Most of the fields are linked to 
lookup tables.  
 
The procedures for the collection and classification 
of elements at risk for landslide risk analysis is much 
less advanced than for other types of hazard, such as 
earthquakes or flooding. These might range from 
simple classifications (RADIUS, 1999) to very com-
plex ones. One of the best examples of a GIS-based 
methodology for elements at risk mapping and loss 
estimation for earthquakes, flooding and windstorms 
is HAZUS (FEMA, 2004). It has been produced in 
the United States by the Federal Emergency Man-
agement Agency  (FEMA) under a cooperative 
agreement with the National Institute of Building 
Science. It contains a detailed description of the clas-
sification methods for all major types of elements at 
risk and how they should be classified and stored in 

Landslide observations 
Observer 
Date 
Photo-Run 
Photo-Number 
Field Photo No 
 
Landslide number 
 
Landslide type 
Material involved 
Subtype 
States of activity 
Distribution of activity 
Activity styles  
Rate 
Depth of slide 
Water content 
Slope in plan 
Slope in profile 
Causes 
Damage 
Stabilization measures 

Scarp Observations 
 
Landslide number 
 
Scarp number 
Field  photo No. 
Height of Scarp 
Profile of scarp 
Steepness 
Vegetation  
Material 
State of Scarp 
Erosion of the scarp 
State of activity 
 
Landslide Accumulation 
 
Landslide number 
 
Accumulation number 
Type 
Subtype 
Material Involved 
Vegetation 
Slope length 
Slope in plan 
Damage 
Stabilization measures 
  



the database, which is only for the US. For landslide 
risk assessment, normally a much more simpler clas-
sification of elements at risk is used (Kong, 2002) the 
following groups of elements at risk are considered 
essential:  

• General building stock:  with information re-
garding the construction type (e.g. masonry, 
wood, reinforced concrete), occupancy type 
(e.g. commercial, residential, industrial etc.) 
and number of floors;   

• Transportation Infrastructure: with informa-
tion regarding the type (e.g. highway, main 
road, unpaved road, railroad), width, and 
traffic volume (for different times of the day); 

• Population distribution: The spatial distribu-
tion of the population as well as the distribu-
tion according to age classes. In the absence 
of census information this might also be ob-
tained from occupancy classes of buildings; 

• Essential facilities:  Essential facilities, in-
cluding medical care facilities, emergency re-
sponse facilities and schools, are those vital 
to emergency response and recovery follow-
ing a disaster. 

 
There are rarely reliable and complete databases 
available that provide the necessary information on 
the elements at risk and their characteristics 
(Montoya, 2002). In an increasing number of cases, 
however, some form of basic digital topographic in-
formation will be available. Very often such topog-
raphic information will also contain a building foot-
print map, which can be considered as one of the 
main inputs for a proper landslide risk assessment. In 
other the basic units for risk analysis could be used 
from existing cadastral databases. Population data 
may be derived from existing census data, although 
this will very often not be made available at the indi-
vidual building level. 
In any case, even if digital information is available, a 
considerable amount of work needs to be done in de-
veloping a GIS database for elements at risk map-
ping, which will include the characterization of the 
building types, mapping of building occupancies, and 
collection of population information through field in-
quiries. Also here the use of mobile GIS is essential 
(Montoya, 2003). If no digital data exist, the ele-
ments at risk mapping can be based on detailed 
orthorectified imagery, which could be on aerial pho-
tographs or high-resolution satellite imagery. From 
such imagery it is possible to delineate the built-up 
area on the basis of textures, patterns, tones, size and 
shadows. On the orthophoto image all buildings can 
be digitized, as well as the land parcels, and the roads 
and other infrastructures. Each polygon should be 
described in the field making use of checklists for the 
collection of data on hazard and vulnerability. In case 
data collection at individual building level is too time 
consuming, a building survey can also be done at a 

more aggregated level in the form of homogeneous 
units, which are groups of buildings, characterized by 
a relative homogeneity of building type, construction 
materials, number of floors and land use distribution.  
For each homogeneous unit information should be 
collected during a field survey, on building character-
istics, land use distribution, socio-economic data on 
population, age distribution and employment. Also 
intends have been made on the automatic classifica-
tion of buildings from InSar (Stilla et al., 2003), Li-
dar (Priestnall et al., 2000; Dash et al. 2004) and 
IKONOS (Fraser et al., 2002). 

4 GIS DATA ANALYSIS AND MODELING FOR 
LANSLIDE RISK ASSESSMENT 

 The number of recent publications on various 
methods for GIS based landslide hazard assessment 
is overwhelming, especially when compared with 
those that also deal with landslide vulnerability and 
risk assessment, which are still very few. Overviews 
and classification of GIS based landslide hazard as-
sessment methods can be found in Soeters and Van 
Westen (1996), Leroi (1996), Carrara et al. (1995, 
1999), Guzzetti et al. (1999) Aleotti and Chowdury, 
(1999) and Van Westen (2000).  In terms of software 
used, GIS systems such as ArcInfo, ArcView, Ar-
cGIS, SPANS, IDRISI, GRASS and ILWIS are 
mostly used and statistical packages such as Stat-
graph or SPSS. Most GIS systems are good in data 
entry, conversion, management, overlaying and visu-
alization, but not very suitable for implementing 
complex dynamic simulation models. Some GIS sys-
tems are specifically designed for implementing such 
dynamic models (PCRaster, 2000) 

4.1 Landslide hazard assessment 

 Still most of the published literature on landslide 
hazard mapping mainly deals with landslide suscepti-
bility mapping, or at best spatial probability assess-
ment. It is mostly very difficult to include the tempo-
ral probability in the analysis of larger areas, due to 
the heterogeneity of the subsurface conditions, which 
are required for physical modeling, or the absence of 
a complete historic record of both landslide occur-
rences as well as rainfall and earthquake records 
(Terlien, 1996). 

4.1.1 Heuristic methods 
The increasing popularity of Geographic Information 
Systems over the last decades has lead to a majority 
of studies, mainly using indirect susceptibility map-
ping approaches (Aleotti and Chowdury, 1999). As a 
repeat consequence there are less publications in 
which GIS is used in combination with a heuristic 
approach, either geomorphological mapping, or in-
dex overlay mapping (e.g. Barredo et al., 2000;Van 



Westen et al., 2000; Perotto-Baldiviezo et al., 2004, 
Van Westen et al., 2003). An example from the US 
is the SMORPH model (Shaw and Johnson 1995), 
which classifies hillslopes as either high, moderate, or 
low landslide hazard, based on their local topog-
raphic slope and curvature. 

4.1.2 Statistical methods 
GIS is very suitable for indirect landslide susceptibil-
ity mapping, in which all possible landslide contribut-
ing terrain factors are combined with a landslide in-
ventory map, using data-integration techniques (Van 
Westen, 1993; Bonham-Carter, 1996; Chung and 
Fabbri, 1999). Chung and Fabbri (1993, 1999) de-
veloped statistical procedures under the name of pre-
dictive modeling, applying favourability functions on 
individual parameters. Using these statistical meth-
ods, terrain units or grid cells are transformed to new 
values representing the degree of probability, cer-
tainty, belief or plausibility that the respective terrain 
units or grid cells may contain or can be expected to 
be subject to a particular landslide in the future. 
One of the aspects that received quite some attention 
in literature is the basic mapping unit used in statisti-
cal landslide susceptibility assessment. Automatic 
classification of terrain units from DEMs is one of 
the challenging topics (Rowbotham and Dudycha, 
1998; Iwahashi et al., 2001; McMillan et al. 2004). 
Chung et al. (1995) defined the concept of unique 
condition polygons, which are made by overlaying 
the input layers, as the basic units for statistical 
analysis. Möller et al (2001) define and describe so-
called Soil Mechanical Response Units (SMRU) 
which are generated from a DEM using GIS, and 
which are used as input parameters in a combined 
heuristic and soil mechanical approach to landslide 
hazard assessment for an area in Rheinhessen, Ger-
many.  
Several publications dealt with a combination of 
fuzzy membership values in GIS based landslide haz-
ard mapping. Some examples are given by Juang et 
al. (1992), Davis and Keller (1997), Binaghi et al. 
(1998) and Gorsevski et al. (2003). Ercanoglu and 
Gokceoglu (2001) assessed the landslide susceptibil-
ity in a landslide prone area located in NW Turkey, 
using several factors such slope angle, land use, to-
pographical elevation, slope aspect, water conditions, 
and weathering depth. Factor analysis was used to 
determine the important weight of each conditioning 
factor, and fuzzy sets and if-then rules were used to 
produce the GIS index maps. Bivariate statistical 
analysis, using weights of evidence modeling is re-
ported by Lee et al. (2002), Suzen and Doyuran 
(2003) and Van Westen et al. (2003). 
Among the most popular statistical landslide hazard 
methods reported in the recent literature are logic re-
gression and artificial neural network (ANN) classifi-
ers. Logistic regression relates predictor variables 
(topographic factors, landuse, soiltypes etc.) to the 

presence or absence of landslides within geographic 
cells and uses the relationship to produce a map 
showing the probability of future landslides (Chung 
et al, 1995; Atkinson and Massari 1998; Rowbotham 
and Dudycha, 1998; Dai et al., 2001; Ohlmacher and 
Davis, 2003; Dai and Lee, 2003; Santacana et al., 
2003). An artificial neural network offers a computa-
tional mechanism that is able to acquire, represent, 
and compute a mapping from one multivariate space 
of information to another, given a set of data repre-
senting the relationships (Lu and Rosenbaum, 2003). 
An artificial neural network is trained by the use of a 
set of associated input and output values. The 
method is not available within existing GIS systems, 
and has been programmed in systems like MATLAB 
(Lee et al., 2003).  The use of statistical methods has 
a number of drawbacks. One of these is the tendency 
to simplify the factors that condition landslides, by 
taking only those that can be relatively easily mapped 
in an area, or derived from a DEM. Another problem 
is related to generalization, assuming that landslides 
happen under the same combination of factors 
throughout the study area. The third problem is re-
lated to the fact that each landslide type will have its 
own set of causal factors, and should be analyzed in-
dividually. The statistical models generally ignore the 
temporal aspects of landslides, and are not able to 
predict the impact of changes in landslide controlling 
conditions (e.g. water table fluctuations, or landuse 
changes). 

4.1.3 Deterministic and probabilistic analysis 
In deterministic analysis, the landslide hazard is de-
termined using slope stability models, resulting in the 
calculation of factors of safety.  Deterministic models 
provide the best quantitative information on landslide 
hazard that can be used directly in the design of engi-
neering works, or in the quantification of risk. How-
ever, they require a large amount of detailed input 
data, derived from laboratory tests and field meas-
urements, and can therefore only be applied over 
small areas at large scales. 
When dealing with deterministic slope stability analy-
sis related to shallow rainfall induced landslides, sev-
eral authors have developed GIS models coupling a 
dynamic hydrological model that simulates the pore 
pressure over time with a slope stability model that 
quantifies the susceptibility as the critical pore pres-
sure threshold (Terlien et al., 1995; Gritzner et al., 
2001; Chen and Lee, 2003). Van Beek and Van Asch 
(2003) developed a model that couples a distributed 
hydrological model with a probabilistic assessment of 
slope stability. They used a raster GIS, PCRaster 
(PCRaster, 2000), with an embedded meta-language 
for dynamic modeling. The language is simple to 
learn and programs need a short development time 
(Wesseling et al., 1996). The model was used to pre-
dict the impact of landuse changes on the changes in 
slope stability (Van Beek and Van Asch, 2003; Van 



Asch et al., 1999). Dietrich et al. (1992) developed a 
physically-based model based on a combination of 
the infinite slope equation and a hydrological compo-
nent based on steady-state shallow subsurface flow. 
This model, called SHALSTAB, has been used ex-
tensively by researchers in the forestry field in the 
western US (Montgomery et al., 1998) and in Italy 
(Borga et al, 1998).  Other slope stability models de-
veloped by the US Forest Service are the Level I 
Stability Analysis (LISA) and Stability Index Map-
ping (SINMAP) which are both based on the infinite 
slope equation. SINMAP is an ArcView extension 
and the LISA program enables the user to compute 
the probability of slope failure using up to 1,000 it-
erations of a Monte Carlo simulation by varying in-
put values to the infinite slope equation (Hammond 
et al., 1992). Other interesting applications showing 
Monte Carlo simulation combined with uncertainty 
mapping using fuzzy methods are presented by Davis 
and Keller (1997) and Zhou et al. (2003). 
The deterministic approaches for earthquake-induced 
landslide hazard analysis are based on the simplified 
Newmark slope stability model, applied on a pixel-
by-pixel basis, which can be carried out completely 
within the current GIS computational environments 
(Miles and Ho, 1999; Luzi et al., 2000; Randall et 
al., 2000; Jibson et al., 2000). Refice and Capolongo 
(2002) have implemented a Monte Carlo simulation 
in combination with the Newmark slope stability 
model. 
Moon and Blackstock (2003) used an entirely differ-
ent approach in their study on deterministic landslide 
hazard assessment for the city of Hamilton in New 
Zealand. They selected representative slope profiles 
from a DEM within the various geomorphological 
units. For the slope stability analysis both circular 
(using the Bishop Simplified method) and non-
circular (using the Spencer- Wright method of analy-
sis) failure surfaces were used, taking into account 
variations in watertable and seismic accelerations. 
Miller and Sias (1998) worked with a two-
dimensional finite-element model (MODFE) to simu-
late unconfined groundwater flux and to calculate 
water table elevations and factors of safety for large 
landslides using Bishop's simplified method of slices 
along individual slope transects. 
In the field of landslide runout modeling also GIS has 
been used extensively (Hungr, 1995). Dymond et al. 
(1999) developed a GIS-based computer simulation 
model of shallow landslides and associated sediment 
delivery to the stream network, for different rain-
storm events and landuse scenarios.. A high-
resolution DEM is one of the major components in 
the model. Cellular automata have also been used ex-
tensively in modelling the flow velocity and extend of 
landslides (Aviolo et al., 2000). 
The use of physical distributed models for landslide 
hazard zonation with GIS also has a number of 
drawbacks. As the input data normally have a high 

degree of uncertainty, the values that result from the 
calculations should not be taken as absolute values of 
landslide occurrence, and therefore cannot directly 
serve for quantitative landslide risk assessment. Fur-
thermore, a considerable parameterization is needed, 
and from sensitivity analysis the estimated soil depth 
appears to be a crucial factor, which is also most dif-
ficult to measure. The models are also not suitable in 
predicting the development of complex landslides 
with a complex hydrological system (Van Asch et al., 
1999). 

4.1.4 Comparison and verification of results. 
 

As Carrara et al. (1999) indicated, the popular mis-
conception is that a GIS-based landslide susceptibil-
ity map is more accurate and objective than a product 
where the qualitative hazard classes are derived 
mainly through expert knowledge. This has also been 
the objective of several studies, which compared dif-
ferent types of landslide hazard assessment (Irigaray 
et al., 1996; Van Westen et al., 1999; Guzzetti et al., 
1999; 2000). Binaghi et al. (1997) made a compari-
son between two methodologies for landslide suscep-
tibility mapping: a probabilistic approach using cer-
tainty factors, and one based on Fuzzy Logic 
integrated with the Dempster–Shafer theory. These 
methodologies are applied to an area in Italy. Suzen 
and Doyuran (2003) made a comparison of bivariate 
and multivariate methods in the same area. They used 
the so-called “seed cell” approach to create a buffer 
around the crown of the landslide for which the input 
values were sampled from the various factor maps. 
They concluded that although 80% of the area was 
classified similarly in general the bivariate susceptibil-
ity map was overestimating the susceptibility classes 
relative to the multivariate map. Chung and Fabbri 
(2003) give an overview of methods that can be used 
for the classification of hazard scores into meaningful 
susceptibility classes, the use of success rates and 
prediction rates and the validation of landslide sus-
ceptibility maps made through statistical methods, 
using time-, space- and random partition methods. 
An example of time partition methods is given by Iri-
garay et al., (1999) who verified a landslide suscepti-
bility map which was made using a statistical method 
with new landslides that were generated during an 
extreme rainfall event, and concluded that about 85 
% of the new landslides occurred in areas, that were 
classified as “High” or “Very high” in the susceptibil-
ity map. 

4.2 Landslide vulnerability and risk analysis 

 Although there have been quite a number of 
publications that focus on the proposed methods for 
landslide risk analysis, relatively few examples have 
been published with examples of the use of GIS in 
this process. Initial reviews on the use of GIS in haz-



ard and risk assessment were made by Wadge et al. 
(1993) and Coppock (1995). Concepts of landslide 
vulnerability assessment are treated by Leone et al. 
(1996), Leroi (1996), Fell and Hartford (1997), 
Wong et al. (1997) and Dai et al. (2002). One of the 
most important inputs to come to quantitative land-
slide vulnerability and risk analysis, is the collection 
of historic landslide information, and the maintenance 
of this information in GIS-based databases, including 
information on the damage resulted from the land-
slides. In Europe, several countries are developing 
their own national landslide database (Dikau et al., 
1996). For example, in Italy the AVI database, con-
tains over 18,000 landslides, of which 1442 had in-
formation on human consequences (Guzzetti, 2000).   
 

4.2.1 Vulnerability assessment 
Vulnerability is defined as the degree of loss to a par-
ticular element or set of elements at risk caused by a 
potential damaging phenomena with a given intensity 
(IUGS, 1997). There are four different types of vul-
nerability: physical, economic, environmental and so-
cial vulnerabilities. The vulnerability of elements at 
risk is normally expressed in the form of a stage-
damage curve, which relates the intensity of the haz-
ardous event with the degree of expected damage to 
the particular type of elements at risk. These curves 
are derived either by statistical analysis of historic 
damage data, or in the absence of those by expert 
rules.  Relatively little work has been done on the 
definition of vulnerability curves for landslides, al-
though some authors have discussed the issue (Wong 
et al. 1997) Due to the uncertainty of the expected 
landslide magnitude or volume, and the unclear rela-
tionship between landslide magnitude and frequency, 
often simply a vulnerability of 1 (total collapse) is 
used for building vulnerability, whereas population 
vulnerability depends very much on the expected 
speed of the landslide, and hence on the landslide 
type. In GIS analysis, the hazard map is then directly 
overlaid with a building footprint map, and all build-
ings that fall within the high hazard zone are consid-
ered to be in high risk. A bit more detailed is the as-
signment of vulnerability classes. Alexander (1989) 
published several landslide damage scales for build-
ings in landslide initiation zones, runout zones and 
for a range of lifelines. AGSO (2001) defined a sim-
ple classification of vulnerability for three classes of 
elements at risk (people, buildings and roads) and for 
different landslide types (See table 1) 
 
 
 
 Vulnerability 

 Persons Buildings Roads 
Debris slides, flows 
and rock fall, > 25º 
slope 

0.9 1 1 

Rotational slides and 
slumps, < 25º slope 

0.05 0.25 0.3 

Small debris slides, 
flows, slumps and rock 
falls 

0.05 0.25 0.3 

 
Table 1: Vulnerability for three classes of elements at 
risk (people, buildings and roads) and for different land-
slide types (AGSO, 2001). 
 
For evaluating the consequences of landslides with 
respect to casualties, it is common practice to plot 
frequency against consequences in F–N diagrams. In 
the case of landslides, F–N plots are graphical repre-
sentations of the cumulative probability per year that 
landslides will cause N or more fatalities, versus the 
number of fatalities resulting from landslides, on a 
log–log scale (Fell and Hartford, 1997). Examples of 
the use of GIS for landslide vulnerability assessment 
can be found for example in Mejía-Navarro (1994). 
Smyth and Royle (2000) evaluated the vulnerability 
to landslides in Niteroi city, in the state of Rio de Ja-
neiro using satellite images, census data, and field 
mapping to characterize the vulnerability of the vari-
ous favelas. Liu and Lei (2003) present a method for 
the regional analysis of physical, economic and envi-
ronmental vulnerabilities to debris flows for different 
counties in Yunnan province (China). 

4.2.2 Landslide risk analysis 
Risk is the result of the product of probability (of oc-
currence of a landslide with a given magnitude), 
costs (of the elements at risk) and vulnerability (the 
degree of damage of the elements at risk due to the 
occurrence of a landslide with a given magnitude). A 
complete risk assessment involves the quantification 
of a number of different types of losses (FEMA, 
2004), such as: 

• Losses associated with general building 
stock: structural and nonstructural cost of re-
pair or replacement, loss of contents; 

• Social losses: number of displaced house-
holds; number of people requiring temporary 
shelter; casualties in four categories of sever-
ity (based on different times of day) 

• Transportation and utility lifelines: for com-
ponents of the lifeline systems: damage prob-
abilities, cost of repair or replacement and 
expected functionality for various times fol-
lowing the disaster; 

• Essential facilities:  damage probabilities, 
probability of functionality, loss of beds in 
hospitals; 

• Indirect economic impact: business inventory 
loss, relocation costs, business income loss, 
employee wage loss, loss of rental income, 
long-term economic effects on the region 

In many areas hazard and risk assessment procedures 
have been implemented, for example in California 



(Blake et al., 2002), Hong Kong (Hardingham et al., 
1998), New Zealand (Glassey et al., 2003), Australia 
(AGSO, 2001; Michael-Leiba et al., 2003), France 
(Flageollet, 1989) or Switzerland (Lateltin, 1997). In 
Australia, the National Geohazards Vulnerability of 
Urban Communities Project (or Cities project) was a 
program of applied research and technique develop-
ment designed to analyze and assess the risks posed 
by a range of geohazards to urban communities 
(AGSO, 2001). The Cities Project initiated a series 
of case studies in Australian cities, e.g. Southeast 
Queensland, Cairns, and Mackay. 
The quantification of landslide risk is often a difficult 
task, as both the landslide intensity and frequency 
will be difficult to calculate for an entire area, even 
with sophisticated methods in GIS. In practice, often 
simplified qualitative procedures are used, such as 
the one developed in Switzerland (Lateltin, 1997) 
(See figure 4). 
 

 

Figure 4: Landslide risk classification scheme pro-
posed by the Swiss Office for Water and Geology 
(Lateltin, 1997). 

4.2.3 Risk information systems 
For other types of hazards, risk information systems 
have been developed and implemented, for example 
for loss estimation of earthquakes, floods and wind-
storms (FEMA, 2004), and technological risks 
(Fedra, 1998). A Risk Information System is the in-
tegration of databases, simulation models, expert sys-
tems and decision support tools, often linked to real-
time datasources, and with a distributed archi 
tecture with important data sharing components via 
the Internet. For example, a risk information system 
should be connected to a series of mobile GIS units, 
with which landslide and elements at risk information 
can be collected real-time in the field. Some exam-
ples of risk information systems are given by Fedra 

(1998). Glassey et al (2003) describe the structure of 
a GIS-based Hazard Information System developed 
for the city of Dunedin in New Zealand. The system 
fundamentally comprises two subsystems; a hazard 
register, containing known existing hazard data and a 
hazard zonation system containing modeled hazard 
zones. In addition, subsurface data (e.g. drillholes) 
and references to the original data sources are in-
cluded.  The system has a user-friendly interface and 
property information, linked to a hazard report can 
be queried interactively. Zerger (2002) examined the 
user perceptions of risk information systems, and 
how risk managers perceive the information provided 
through a GIS-based risk information system. Ac-
cording to Zerger (2002): “If user considerations are 
assessed early in the risk modeling process, GIS 
practitioners can minimize data capture, avoid un-
necessary levels of complexity in the spatial modeling 
and generally improve the utility of the risk modeling 
for decision-making”. 

5  CONCLUSIONS 

The literature on landslide risk assessment indicates 
that a lot of developments have taken place in the last 
decade, and that quantitative risk assessment for in-
dividual locations is feasible (Wu et al., 1996; 
Morgenstern, 1997; Einstein, 1997; Fell and Hart-
ford, 1997; Wong et al., 1997). However, the gen-
eration of quantitative risk zonation maps, expressing 
the expected monetary losses as the product of prob-
ability (of occurrence of a landslide with a given 
magnitude), costs (of the elements at risk) and vul-
nerability (the degree of damage of the elements at 
risk due to the occurrence of a landslide with a given 
magnitude) seems still a step to far. In the meantime, 
risk maps are produced for many municipalities, fol-
lowing a pragmatic and qualitative approach (Mi-
chael-Leiba et al., 2003). Such risk maps form the 
basis for development and regulatory planning. Geo-
Information tools have become essential for landslide 
hazard, vulnerability and risk assessment. For obtain-
ing landslide probability information the following 
approaches are possible: 
• At large scales deterministic models are used for 

determining factors of safety, and dynamic models 
are used to model trajectories of landslides. When 
combined with probabilistic methods, related to 
the variability of input data and return periods of 
triggering events, also failure probability can be 
obtained. 

• At medium scales landslide data is combined with 
factor maps (e.g. slope angle, lithology etc) using 
heuristic or statistical methods, resulting in land-
slide susceptibility maps. When combined with 
landslide frequency analysis, during which land-
slide information from temporal databases is com-
bined with rainfall and earthquake records, it is 

 



also possible to obtain landslide probabilities. 
Earth Observation data should be used more on a 
routine basis in the regular mapping of new land-
slide phenomena, and the generation of landslide 
databases. 

The mapping of elements at risk for a landslide risk 
assessment project is not fundamentally different 
from other types of hazards, although more research 
should be carried out, which characteristics of ele-
ments at risk are essential for landslide vulnerability 
study. In the original equation of risk the cost of 
elements at risk plays an important role, although the 
cost aspect is hardly ever really taken into account in 
landslide risk studies. More work also needs to be 
done on the definition of the vulnerability of elements 
at risk for landslides, and the generation of damage 
functions. The difficulty in defining landslide vulner-
ability values is the uncertainty of the expected land-
slide magnitude or volume.  
Finally, the various components of landslide risk as-
sessment should be integrated in risk information 
/management systems which should be developed as 
spatial decision support systems for local authorities 
dealing with risk management. 
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