

PIERO TOFFANIN

OpenDroneMap: The Missing
Guide

A Practical Guide To Drone Mapping Using Free and
Open Source Software

First published by MasseranoLabs LLC 2019

Copyright © 2019 by Piero Toffanin

All rights reserved. No part of this publication may be reproduced, stored
or transmitted in any form or by any means, electronic, mechanical,

photocopying, recording, scanning, or otherwise without written
permission from the publisher. It is illegal to copy this book, post it to a

website, or distribute it by any other means without permission.

Piero Toffanin asserts the moral right to be identified as the author of this
work.

Piero Toffanin has no responsibility for the persistence or accuracy of
URLs for external or third-party Internet Websites referred to in this

publication and does not guarantee that any content on such Websites is, or
will remain, accurate or appropriate.

Designations used by companies to distinguish their products are often
claimed as trademarks. All brand names and product names used in this
book and on its cover are trade names, service marks, trademarks and

registered trademarks of their respective owners. The publishers and the
book are not associated with any product or vendor mentioned in this book.
None of the companies referenced within the book have endorsed the book.

Trademarks: OpenDroneMap and the OpenDroneMap logo are
trademarks or registered trademarks of Cleveland Metroparks and/or its

affiliates and may not be used without written permission. MasseranoLabs
is not associated with Cleveland Metroparks. Cleveland Metroparks has

not endorsed this book.

First edition

Cover art by Piero Toffanin
Proofreading by Danielle Y. Toffanin

This book was professionally typeset on Reedsy.
Find out more at reedsy.com

https://reedsy.com

“Empowerment of individuals is a key
part of what makes open source work,
since in the end, innovations tend to
come from small groups, not from
large, structured efforts.”

- Tim O’Reilly

Contents

Preface vii
Acknowledgement x

Gold Supporters x
Silver Supporters xi

I Introduction

Why OpenDroneMap? 3
What You Can Do with OpenDroneMap 5
The Key To Becoming a Successful User 8

II Getting Started

Installing The Software 13
Hardware Requirements 15
Installing on Windows 16
Installing on macOS 26
Installing on Linux 29
Basic Commands and Troubleshooting 32
Hello, WebODM! 34

Processing Datasets 36
Dataset Size 36
File Requirements 37
Process Tasks 38

Output Results 42
Share With Others 43
Export To Another WebODM 44
Manage Plugins 44
Change The Look & Feel 44
Create New Users 44
Manage Permissions 44
How Does WebODM Process Images? 45

The Processing Pipeline 46
Load Dataset 47
Structure From Motion 47
Multi View Stereo 51
Meshing 52
Texturing 54
Georeferencing 56
Digital Elevation Model Processing 57
Orthophoto Processing 58

Task Options in Depth 61
build-overviews 64
cameras 64
crop 65
debug 66
dem-decimation 66
dem-euclidean-map 67
dem-gapfill-steps 68
dem-resolution 70
depthmap-resolution 71
dsm 72
dtm 72
end-with 73
fast-orthophoto 74

gcp 78
help 78
ignore-gsd 78
matcher-distance 80
matcher-neighbors 81
max-concurrency 82
merge 83
mesh-octree-depth 83
mesh-point-weight 86
mesh-samples 88
mesh-size 90
min-num-features 90
mve-confidence 93
opensfm-depthmap-method 95
opensfm-depthmap-min-patch-sd 95
orthophoto-bigtiff 99
orthophoto-compression 99
orthophoto-cutline 100
orthophoto-no-tiled 102
orthophoto-resolution 103
pc-classify 103
pc-csv 110
pc-ept 110
pc-filter 110
pc-las 111
rerun 112
rerun-all 112
rerun-from 112
resize-to 113
skip-3dmodel 113
sm-cluster 115

smrf-scalar 115
smrf-slope 115
smrf-threshold 115
smrf-window 115
split 115
split-overlap 116
texturing-data-term 116
texturing-keep-unseen-faces 123
texturing-nadir-weight 125
texturing-outlier-removal-type 128
texturing-skip-global-seam-leveling 131
texturing-skip-hole-filling 133
texturing-skip-local-seam-leveling 133
texturing-skip-visibility-test 136
texturing-tone-mapping 136
time 137
use-3dmesh 137
use-exif 138
use-fixed-camera-params 138
use-hybrid-bundle-adjustment 139
use-opensfm-dense 141
verbose 141
version 141

Ground Control Points 142
Creating a GCP file using POSM GCPi 146
Using GCP files 151
How GCP files work 151

Flying Tips 153
Fly Higher 153
Fly on Overcast Days 154
Fly Between 10am and 2pm 154

Fly at Different Elevations and Capture Multiple Angles154
Fly on Calm Days 155
Increase Overlap 156
Set Drone to Hover While Taking Images 156
Check Camera Settings 157

III Advanced Usages

The Command Line 161
Command Line Basics 162
Using ODM 164
Processed Files Owned By Root 165
Add New Processing Nodes to WebODM 166
Batch Geotagging of Images Using Exiftool 167
Further Readings 168

Docker Essentials 169
Docker Basics 169
Managing Containers 171
Managing Images 174
Managing Volumes 176
Docker-Compose Basics 179
Managing Disk Space 181
Changing Entrypoint 182
Assigning Names To Containers 182
Jumping Into Existing Containers 183
Making Changes Without Rebuilding Images 184

Camera Calibration 186
Option 1: Use an Existing Camera Model 188
Option 2: Generate a Camera Model From a Calibra-
tion Target 190
Taking Pictures of a Calibration Target 191

Extracting a Camera Profile 192
Manually Writing a cameras.json File 195
Bonus: Checking Your LCP File by Manually Remov-
ing Geometric Distortion 198

Processing Large Datasets 202
Split-Merge Options 203
Local Split-Merge 206
Distributed Split-Merge 208
Using Image Groups and GCPs 213
Limitations 214

The NodeODM API 215
Launching a NodeODM Instance 217
NodeODM Configuration 218
Using the API with cURL 221
Remove a Task 223
API Specification 224

Automated Processing With Python 244
Getting Started 245
Example 1: Hello NodeODM 246
Example 2: Process Datasets 247
Concluding Remarks 250
API Reference 250

Glossary 259
About the Author 263

Preface

“If you’re wondering who’s in charge of writing documentation, you
are.” - Piero Toffanin

I never thought I’d eventually end up writing a book about
OpenDroneMap. I made my first code contribution to the
project in 2016, after buying a drone and discovering that
software can automatically turn 2D images into 3D models
and maps. I was intrigued by the process and OpenDroneMap
was one of the few open source programs that I could manage
to get up and running. At the time the program was difficult
to use and worked only from the command line. So over a
few days I contributed a rough user interface. That interface
later evolved into the NodeODM project. People noticed,
loved it and asked for more. So that was the start of the
WebODM project. My involvement stepped up once I started
diving into the processing engine’s internals and making some
major contributions there along the way. At the time the
program was changing so rapidly that even writing some simple
documentation seemed like an impossible task. It would be
obsolete in a few months, so why bother?

Today the software is still rapidly changing, but the general
structure of the program is much more defined, making an
attempt at documenting it feasible. People in the meanwhile
kept asking for a comprehensive guide. So, one day I decided

vii

to take up the effort and write it. Thus, OpenDroneMap: The
Missing Guide was born.

I decided to offer it as a book and not as an online resource
for several reasons:

• A book has a more discursive format and allows the
information to be presented in a more linear fashion

• The project already has an online reference documentation
and I didn’t want to rewrite the work others have already
made. This book does not replace the online documenta-
tion, it expands it

• It gives people an opportunity to financially support the
project

I’m aware that for some people buying a book might not be
an option. Reasons can range from financial hardship to the
inability of making purchases with a credit card. To mitigate
this problem, I have setup a page on the book’s website at
https://odmbook.com where people can apply for a free or
discounted copy. Furthermore, if you purchased this book and
you know somebody who is unable to get it, please feel free to
forward them your copy (just please don’t share it on a public
site).

As soon as a second edition of the book is written, I pledge
to release this book for everyone to download freely.

I have tried my best to write in a style that a complete novice
could understand, while keeping it technical enough for ad-
vanced users to gain valuable insights. I have favored simplicity
over correctness when discussing concepts, knowing that
scholarly readers will know how to recognize the shortcomings
of my descriptions and where to lookup the more formal

viii

https://odmbook.com

definitions.
I’m not a professional writer and English is not my first

language, so I hope the reader will forgive me for the occasional
awkwardness in sentence structures or a misspelling that might
have been missed during review.

I believe that constructive criticism is a key component to
learning and improving. How was the book? What could be
improved for the next edition? What was not clear?

If you have feedback or any other comment in general, please
feel free to drop me a note: pt@masseranolabs.com.

Enjoy the book!

-Piero

ix

Acknowledgement

This book would not have existed without the amazing support
of early enthusiasts who offered to purchase the book even
before it was finished! There are no words to express my
gratitude for the motivation they have provided me during
many long days and nights of writing. In no particular order,
I’d like to thank them individually.

Gold Supporters

Mike Finlayson, Timothy Viola (Viola Engineering, PC),
Edward Wyrwas (Prepared for Flight, LLC), Dr. Bertram
Bilek (Instituto Bilek), Owen Torgerson, Matt Harding (Osprey
Mapping Solutions, LLC), Issouf Ouattara (FasoDrone),
Reality Scout, Nathan Ryan, Bill Fredricks (Penn’s Wall, LLC),
Christoph Trockel (SMQ), Justin Cole, Tryhard (Tryhard
Prospecting), Pascal Vincent (AOMS), Luca Delucchi, Matthew
Cua (OneSquirrelMade), Keith Conley (Beyond Aerial,
LLC), Greg Rouse (Ross County Ohio SWCD), Silva Diego
Hemkemeier, Robert Nall (Bulldog Imagery, LLC), Maciej
Cybulski (MC2Systems), Adam Steer (Spatialised), Pratyush
Kumar Das (Asian Institute of Technology), Will Welker (Pi
Farm), Shunichiro Nishino, Mapping Services Australia,
Marcos Gomez-Redondo (Facultad de Ingeniería de la
Universidad Nacional de Asunción), AeroSurvey New Zealand,

x

Bryan Jackson (kaaspad), Robert Hall (Pro Aerial Digital),
Jon Lee (Data Aero, LLC), Chris Mather (Bendigo Aerial
Australia), Qopter360 Ltd, David Bradburn (DMB Consulting),
Mauricio Gaviria (Tecnidrones S.A.S. - Colombia), Arne Wulff,
Andy Lyons (University of California), Francisco Flores (FPFI
Consulting Ltda., Chile), University of Copenhagen Forest
and Landscape College, Masakazu Oshio (Land and House
Investigator, Japan), NC State Center for Geospatial Analytics,
Sasanai Chanate

Silver Supporters

David E. Gorla (CONICET, Argentina), Jarrett Totton (GoMap-
ping), Japar Sidik Bujang (Universiti Putra Malaysia), Jeong
Hyung-sik (Garam Forest Technology), Geco Enterprises Ltda
Centro de I+D Chile, Neill Glover (Land IQ Insights), Luigi
Pirelli (Freelance QGIS core developer), Jorge Lama, Michael
Nielsen (Skyfair), Loren Abdulezer (Evolving Technologies
Corporation), Jonathan Quiroz Valdivia, Mark W. Fink, Tomasz
Nycz (GIS w Górach), Daniel Kendall (Daktech Pty Ltd), Joe
Martin, Jerome Maruéjouls (Geoek), Álvaro Perdigão (TAW-
S2i-Software), Kim Junseong (KMAP), Richard Marshall (Yacht
Pogeyan), Randy Niedz, The New Zealand Institute for Plant
& Food Research Limited, Gary Sieling (Element 84), Ryan
Howell, Leon Schulpen (Kapla), Carlos Sousa, Marco Rizzetto,
Sandy Thomson, Tero Keso (Häme University of Applied
Sciences), Evan Watterson (Bluecoast Consulting Engineers),
Alexander R. Groos (University of Bern)

Thank you!

xi

xii

I

Introduction

The White Rabbit put on his spectacles. “Where shall I
begin, please your Majesty?” he asked. “Begin at the
beginning”, the King said gravely, “and go on till you

come to the end: then stop.”

- Lewis Carroll, Alice’s Adventures in Wonderland

1

Why OpenDroneMap?

“What makes OpenDroneMap different than soft-
ware XYZ?” - Most software XYZ users

I would be tempted to list the many features of the software,
how it’s based on open standards, why thousands of organiza-
tions have chosen it as their preferred solution for processing
aerial data, why it scales horizontally, and blah blah blah.

However, OpenDroneMap is not unique in functionality.
At the time of writing (mid 2019) there are dozens of pho-
togrammetry solutions that can deliver results comparable and
sometimes better than OpenDroneMap.

What makes the software unique, is that it offers people a
choice. Prior to its creation people were mostly confined to
the lands of proprietary, black-box systems. If you wished to
unlock the insights of aerial data, brought to us by the recent
availability of inexpensive UAVs (Unmanned Aerial Vehicles),
you had no choice. Pay up, get locked-in and trust that the
results are correct.

3

OPENDRONEMAP: THE MISSING GUIDE

By distributingOpenDroneMap under a free and open source
license, we have given people the ability to use, modify, examine,
distribute and sell the software under very permissive terms.
We have given people a choice.

Philosophical reasons aside, most users do not care about
software freedom as much as they care about free pizza, so
I’m excited to tell you that OpenDroneMap can be installed at
no cost on all the computers you like and scale to thousands
of clusters without licensing costs, with an active community
of thousands of users and organizations, all while the project
receives love from different organizations that fund and benefit
from its development since 2013. We offer more features than
any other open source software in the field, are growing at
steady pace and have plans to take over the world when the
autonomous robot apocalypse arrives!

4

2

What You Can Do with
OpenDroneMap

The name OpenDroneMap immediately seems to narrow the
scope of the program exclusively to the domain of drone image
processing. While the history and focus of the program is
centered around processing aerial imagery, it’s not limited to
that. The application can be used to perform photogrammetry
tasks in many other fields such as archaeology and architecture.
Indoor scanning and modeling with the use of a classic hand-
held camera (or even a phone) is also supported.

5

OPENDRONEMAP: THE MISSING GUIDE

Apartment building 3D model processed with OpenDroneMap

However, OpenDroneMap really shines when it comes to aerial
imagery. By aerial imagery I mean pictures taken from UAVs,
planes, kites or balloons. The software can generate georefer-
enced point clouds, 3D models, digital elevation models and
maps, using Ground Control Points (GCPs) for better accuracy
or without any GPS information at all. The program can be
installed on a local machine or on cloud servers such as those
provided by Amazon Web Services (AWS) or Google Compute
Engine. It can be used from the command line or with a user-
friendly interface. It can be used from the Python programming
language via a dedicated Software Development Kit (SDK)
or with other programming languages using an Application
Programming Interface (API). The software can be integrated
into new and existing platforms and allows organizations to

6

WHAT YOU CAN DO WITH OPENDRONEMAP

scale their processing capabilities as needed.
Today companies, government entities, professionals and

hobbyists alike use some or all parts of OpenDroneMap to
perform a varieties of tasks, including:

• Monitoring crops in agriculture.
• Mapping land areas.
• Reporting construction progress.
• Classifying and counting trees.
• Analyzing stockpile volumes.
• Documenting car crashes.
• Inspecting roofs and cell towers.
• Documenting proof of work completion.
• Improving OpenStreetMap.
• Stitching historical aerial images.

This list is by no means exhaustive. We often encounter new
ingenuous ways in how people are using the software. Open-
DroneMap is a collection of solutions for collecting, processing,
analyzing and displaying aerial data, with a photogrammetry
toolkit at its core. Aside from the classical uses, let creativity
and imagination be the limit.

The project has awebsite hosted on https://www.opendronemap.
org. If you haven’t looked around the website yet, I encourage
you to take a peek and read some of the (often humorous) blog
posts. You might find inspiration for novel things to do with
the software.

7

https://www.opendronemap.org
https://www.opendronemap.org

3

The Key To Becoming a Successful
User

As an open source project, users can choose to download the
software, read the documentation, start using it and be done.
Maybe file a bug report when problems occur. We’re happy
when people just want to use the software and be done.

However, we recommend people join the vibrant Open-
DroneMap community if they are using the software. This
unlocks many benefits, such as:

• The ability to propose the addition of a missing feature.
• Becoming an expert in one or more areas of the program

by helping others.
• Getting bugs that affect them personally resolved more

quickly.
• Helping to steer the direction of the project.
• Participating in community events around the globe, meet-

ing people and making new friends.

People are often hesitant to join and participate in a community,
mostly because they are new and think they have nothing

8

THE KEY TO BECOMING A SUCCESSFUL USER

worthy to say or contribute. But literally anyone can contribute.
Before going to the next chapter, I invite you to join the

friendly OpenDroneMap community at https://community.
opendronemap.org. Introduce yourself, tell people how you are
hoping to use the software or anything else about you. Later
on, after reading this book, try to answer a question from a
fellow user. Even if you don’t know for sure the answer, try to
help anyway. Some help is better than no help. Propose a new
feature or report bugs as you find them. The cycle of reciprocal
help will come back to you.

Plus, you might even have some fun along the way and have
a chance to meet other fellow drone mappers in the process!

9

https://community.opendronemap.org
https://community.opendronemap.org

II

Getting Started

“The way to get started is to quit talking and begin
doing.”

- Walt Disney

4

Installing The Software

Until recently OpenDroneMap was the term used to refer to
a single command line application (what is now known as the
ODM project). Not anymore. With the recent development
of a web interface, an API and other tools, OpenDroneMap
has become an ecosystem of various applications to process,
analyze and display aerial data. This ecosystem is made of
several components:

• ODM is the processing engine, which can be used from
the command line. It takes images as input and produces a
variety of outputs, including point clouds, 3D models and
orthophotos.

• NodeODM is a light-weight API built on top of ODM. It
allows users and applications to access the functions of
ODM over a computer network.

• WebODM is a friendly user interface that includes a map
viewer, a 3D viewer, user logins, a plugin system and many
other features that are expected of modern drone mapping
platforms.

• CloudODM is a small command line client to communi-

13

OPENDRONEMAP: THE MISSING GUIDE

cate with ODM via the NodeODM API.
• PyODM is a Python SDK for creating tasks via the

NodeODM API. We cover it in more detail in the Automated
Processing With Python chapter.

• ClusterODM is a load balancer for connecting together
multiple NodeODM instances and is covered in the Process-
ing Large Datasets chapter.

I believe in a practical and incremental approach to learning.
To keep things as simple as possible, we will begin with the
installation and usage of WebODM, which under the hood also
installs ODM and NodeODM. For the purpose of installing
WebODM, we will briefly need to use the command line, but
not much. We’ll leave the command line aside until part III,
where we will cover more advanced uses that require it. By
then readers will be comfortable with the core concepts of the
program and the learning curvewill bemore gradual. Advanced
users that are familiar with the installation process may wish
to skip this chapter.

ODM, NodeODM and WebODM are available on all major
platforms (Windows, macOS and Linux) via a program called
docker, which is required to run the software. Docker is a tool
to run containers, which are packaged copies of an entire system,
its software and its dependencies. These containers run within
a virtual environment. On Linux this virtual environment
is available from the operating system and is very efficient.
On macOS and Windows the containers run within a Virtual
Machine (VM), so there’s a bit of overhead, but not a lot. Once
installed users do not have to worry much about docker, as it
can be used as a simple tool to launch WebODM and nothing
else. We dedicate an entire chapter to more advanced uses of

14

INSTALLING THE SOFTWARE

docker in Part III of the book.
We often get asked why we use docker, since it tends to be

a pain to install and configure on platforms other than Linux.
ODM is a complex software. It relies on many dependencies,
some of which simply do not run on Windows. Without
docker it would not be possible to run ODM on Windows or
macOS. On these platforms ODM cannot run natively. Future
development efforts are being focused on leveraging the new
Windows Subsystem for Linux (WSL) and the possibility to
make a native port of all dependencies to macOS, which is
going to make the installation much easier. But for the time
being, we are stuck in a love/hate relationship with docker.

On Ubuntu Linux 16.04 it’s feasible to run all Open-
DroneMap software natively. However, because there’s very
little performance penalty for running docker on Linux1 and
docker is straightforward to setup on this platform, I don’t
recommend it. On Linux the advantages of containerization
far outweigh a tiny performance penalty. With docker users
also get easy one-step updates of the software, which is nice.

Hardware Requirements

The bare minimum requirements for running the software are:
• 64bit CPU manufactured on or after 2010
• 20 GB of disk space
• 4 GB RAM

1 IBM Research Report: An Updated Performance
Comparison of Virtual Machines and Linux Containers:
https://domino.research.ibm.com/library/cyberdig.nsf/pa-
pers/0929052195DD819C85257D2300681E7B/$File/rc25482.pdf

15

OPENDRONEMAP: THE MISSING GUIDE

No more than 100-200 images can be processed with these
specifications (the software will run out of memory). Recom-
mended requirements are:

• Latest generation CPU
• 100 GB of disk space
• 16 GB RAM

Which will allow for a few hundred images to be processed
without too many issues. A CPU with more cores will allow
for faster processing, while a graphics card (GPU) currently has
no impact on performance. For processing more images, add
more disk space and RAM linearly to the number of images
you need to process.

Installing on Windows

To run OpenDroneMap you need at least Windows 7. Previous
versions of Windows are not supported.

Step 1. Check Virtualization Support

Docker requires a feature from your CPU called virtualization,
which allows your computer to run VMs. Make sure it’s
enabled! Sometimes this is disabled. To check, on Win-
dows 8 or higher you can open the Task Manager (press
CTRL+SHIFT+ESC) and switch to the Performance tab.

16

INSTALLING THE SOFTWARE

Virtualization should be enabled

On Windows 7 to see if you have virtualization enabled you can
download the Microsoft® Hardware-Assisted Virtualization
Detection Tool2 instead.

If virtualization is disabled, you’ll need to enable it. The
procedure unfortunately is a bit different for each computer
model, so the best way to do this is to look up on a search
engine “how to enable vtx for <type your computer model
here>”. Often times it’s a matter of restarting the computer,
immediately pressing F2 or F12 during startup, navigating the
boot menu and changing the settings to enable virtualization

2 Microsoft® Hardware-Assisted Virtualization Detection Tool:
http://www.microsoft.com/en-us/download/details.aspx?id=592

17

OPENDRONEMAP: THE MISSING GUIDE

(often called VT-X).

Common keys to press at computer startup to access the boot menu
for various PC vendors

After you’ve enabled virtualization, proceed to step 2.

Step 2. Install Requirements

First, you’ll need to install:
• Git: https://git-scm.com/downloads
• Python (the latest 3.x version): https://www.python.org/

downloads/windows/

18

https://git-scm.com/downloads
https://www.python.org/downloads/windows
https://www.python.org/downloads/windows

INSTALLING THE SOFTWARE

For Python 3, make sure you check Add Python 3.x to PATH
during the installation.

Don’t forget to add the Python executable to your PATH

Then, only if you are on Windows 10 Home, Windows 8 (any
version) or Windows 7 (any version), install:

• Docker Toolbox: https://github.com/docker/toolbox/
releases/download/v18.09.3/DockerToolbox-18.09.3.exe

If you are on Windows 10 Professional or a newer version, you
should install instead:

• Docker Desktop: https://download.docker.com/win/
stable/Docker%20for%20Windows%20Installer.exe

Please do NOT install both docker programs. They are
different and will create a mess if they are both installed.

After installing docker, launch it from the Desktop icon that
is created from the installation (Docker Quickstart in the

19

https://github.com/docker/toolbox/releases/download/v18.09.3/DockerToolbox-18.09.3.exe
https://github.com/docker/toolbox/releases/download/v18.09.3/DockerToolbox-18.09.3.exe
https://download.docker.com/win/stable/Docker%20for%20Windows%20Installer.exe
https://download.docker.com/win/stable/Docker%20for%20Windows%20Installer.exe

OPENDRONEMAP: THE MISSING GUIDE

case of Docker Toolbox, Docker Desktop otherwise). This
is important, do not skip this step. If there are errors, follow
the prompts on screen to fix them.

Step 3. Check Memory and CPU Allocation

Docker onWindowsworks by running a VM in the background
(think of a VM as a sort of computer emulator). This VM has a
certain amount of memory allocated and WebODM can only
use as much memory as it’s allocated.

If you installed Docker Toolbox (see below if you installed
Docker Desktop instead):

1. Open the VirtualBox Manager application.
2. Right click the default VM and press Close (ACPI Shut-

down) to stop the machine.
3. Right click the default VM and press Settings...
4. Move the Base Memory slider from the System panel

and allocate 60-70% of all available memory, optionally
adding 50% of the available processors from theProcessor
tab also.

20

INSTALLING THE SOFTWARE

VirtualBox settings

Then press OK, right click the default VM and press Start.
If you installed Docker Desktop instead:
1. Look in the system tray and right click the white whale

icon.
2. From the menu, press Settings...
3. From the panel, click Advanced and use the sliders to

allocate 60-70% of available memory and use half of all
available CPUs.

4. Press Apply.

21

OPENDRONEMAP: THE MISSING GUIDE

Step 4. Download WebODM

Open the Git Gui program that comes installed with Git. From
there:

• For the SourceLocation field type: https://github.com/Open-

22

INSTALLING THE SOFTWARE

DroneMap/WebODM
• For the Target Directory field, click browse and navigate

to a folder of your choosing (create one if necessary).
• Press Clone.

Git Gui

If the download succeeded, you should now see this window:

23

OPENDRONEMAP: THE MISSING GUIDE

Git Gui after successful download (clone)

Go to the Repository menu, then click Create Desktop Icon.
Clicking the newly created desktop icon will allow you to re-
open this window in the future.

Step 4. Launch WebODM

From Git Gui, go to the Repository menu, then click Git Bash.
From the command line terminal type:

$./webodm.sh start

Several components will download to your machine at this
point, including WebODM, NodeODM and ODM. After the
download you should be greeted by the following screen:

24

INSTALLING THE SOFTWARE

Console output after starting WebODM for the first time

• If you are using Docker Desktop, open a web browser to
http://localhost:8000

• If you are using Docker Toolbox, find the IP address to
connect to by typing:

$ docker-machine ip

192.168.1.100

Then connect to http://192.168.1.100:8000 (replacing the IP
address with the proper one).

25

http://localhost:8000
http://192.168.1.100:8000

OPENDRONEMAP: THE MISSING GUIDE

Installing on macOS

Most modern (post 2010) Mac computers running macOS
Sierra 10.12 or higher can run OpenDroneMap using docker,
as long as hardware virtualization is supported (see below).

Step 1. Check Virtualization Support

Open a Terminal app and type:

$ sysctl kern.hv_support

kern.hv_support: 1

If the result is 1, then your Mac is supported! Continue with
Step 2.
If the result is 0, unfortunately it means your Mac is too old to
run OpenDroneMap. :(

Step 2. Install Requirements

There are only two programs to install:
1. Docker: https://download.docker.com/mac/stable/

Docker.dmg
2. Git: https://sourceforge.net/projects/git-osx-installer/

files/

After installing docker you should find an icon that looks like a
whale in the task bar.

26

https://download.docker.com/mac/stable/Docker.dmg
https://download.docker.com/mac/stable/Docker.dmg
https://sourceforge.net/projects/git-osx-installer/files
https://sourceforge.net/projects/git-osx-installer/files

INSTALLING THE SOFTWARE

You can verify that docker is running properly by opening a
Terminal app and typing:

$ docker run hello-world

[...]

Hello from Docker!

To verify that git is installed, simply type:

$ git --version

git version 2.20.1 (Apple Git-117)

If you get a bash: git: command not found, try to restart your
Terminal app and double-check for any errors during the
install process.

27

OPENDRONEMAP: THE MISSING GUIDE

Step 3. Check Memory and CPU Allocation

Docker on macOS works by running a VM in the background
(think of it as a sort of computer emulator). This VM has a
certain amount of memory allocated and WebODM can only
use as much memory as it’s allocated.

1. Right click the whale icon from the task bar and click
Preferences...

2. Select the Advanced tab.
3. Adjust the CPUs slider to use half of all available CPUs

and the memory to use 60-70% of all available memory.
4. Press Apply & Restart.

Docker advanced settings

28

INSTALLING THE SOFTWARE

Step 4. Download and Launch WebODM

From a Terminal type:

$ git clone https://github.com/OpenDroneMap/WebODM

$ cd WebODM

$./webodm.sh start

Then open a web browser to http://localhost:8000.

Installing on Linux

OpenDroneMap can run on any Linux distribution that sup-
ports docker. According to docker’s documentation website3

the officially supported distributions are CentOS, Debian,
Ubuntu and Fedora, with static binaries available for others
(I use Arch Linux quite successfully). If you have to pick a
distribution solely for running OpenDroneMap, Ubuntu is the
recommended way to go.

Step 1. Install Requirements

There are four programs that need to be installed:
1. Docker
2. Git
3. Python (2 or 3)
4. Pip

3 Docker Documentation: https://docs.docker.com/install/

29

OPENDRONEMAP: THE MISSING GUIDE

We cannot possibly cover the installation process for every
Linux distribution out there, so we’ll limit the instructions to
those that are distributions officially supported by docker. In
all cases it’s just a matter of opening a terminal prompt and
typing a few commands.

Install on Ubuntu / Debian

Commands to type:

$ sudo apt update

$ curl -fsSL https://get.docker.com -o get-docker.sh

$ sh get-docker.sh

$ sudo apt install -y git python python-pip

Install on CentOS / RHEL

Commands to type:

$ curl -fsSL https://get.docker.com -o get-docker.sh

$ sh get-docker.sh

$ sudo yum -y install git python python-pip

Install on Fedora

Commands to type:

30

INSTALLING THE SOFTWARE

$ curl -fsSL https://get.docker.com -o get-docker.sh

$ sh get-docker.sh

$ sudo dnf install git python python-pip

Install on Arch

Commands to type:

$ sudo pacman -Sy docker git python python-pip

Step 2. Check Additional Requirements

In addition to the three programs above, the docker-compose
program is also needed. Sometimes it’s already installed with
docker, but sometimes it isn’t. To verify if it’s installed type:

$ docker-compose --version

docker-compose version 1.22.0, build f46880f

If you get a:

docker-compose: command not found

you can install it by using pip:

31

OPENDRONEMAP: THE MISSING GUIDE

$ sudo pip install docker-compose

Step 3. Download and Launch WebODM

From a terminal type:

$ git clone https://github.com/OpenDroneMap/WebODM

$ cd WebODM

$./webodm.sh start

Then open a web browser to http://localhost:8000.

Basic Commands and Troubleshooting

The cool thing about using docker is that 99% of the tasks you’ll
ever need to perform while using WebODM can be done via
the ./webodm.sh script. You have already encountered one of
them:

$./webodm.sh start

which takes care of starting WebODM and setting up a default
processing node (node-odm-1). If you want to stop WebODM,
you can press CTRL+C or use the following command:

32

INSTALLING THE SOFTWARE

$./webodm.sh stop

There are several other commands you can use, along with
different parameters. Parameters passed to the ./webodm.sh
command and are typically prefixed with two dashes. The
–port parameter for example instructs WebODM to use a
different network port:

Run WebODM on port 80 instead of 8000

$./webodm.sh restart --port 80

Other useful commands are listed below:

Restart WebODM (useful if things get stuck)

$./webodm.sh restart

Reset the admin user's password if you forget it

$./webodm.sh resetadminpassword newpass

Update everything to the latest version

$./webodm.sh update

Store processing results in the specified folder

instead of the default location (inside docker)

$./webodm.sh restart --media-dir /path/to/

webodm_results

See all options

$./webodm.sh --help

33

OPENDRONEMAP: THE MISSING GUIDE

For general maintenance tasks, including backups and trou-
bleshooting, the README page of WebODM has the most up-
to-date instructions4 and it’s well worth a read. The community
forum5 is also a great place to ask for help if you get stuck during
any of the installation steps and for general questions on using
the ./webodm.sh script.

Hello, WebODM!

After running ./webodm.sh start and opening WebODM in
the browser, you will be greeted with a welcome message
and will be asked to create the first user. Take some time
to familiarize yourself with the web interface and explore its
various menus.

WebODM dashboard

Notice that under the Processing Nodes menu there’s a
node-odm-1 node already configured for you to use. This is

4 WebODM README: https://github.com/OpenDroneMap/WebODM
5 OpenDroneMap Community Forum: https://community.open-

dronemap.org

34

INSTALLING THE SOFTWARE

a NodeODM node and has been created automatically by
WebODM. This node is running on the same machine as
WebODM. In The Command Line chapter we will explore how
to add new nodes, even from different machines.

Now it’s time to process some data.

35

5

Processing Datasets

If you own a drone, I recommend trying to process images
you’ve collected: it’s more gratifying than using somebody
else’s. OpenDroneMap does not (yet) have a flight planner or a
flight controller application, but there are many freely available
such as DroneDeploy6, DJI GS Pro7 or QGroundControl8 that
can help you capture a dataset. For advice on data collection,
also check the Flying Tips chapter. If you need some sample
data, there are many freely available datasets on the community
forum9 and you are welcome to use them.

Dataset Size

Depending on the amount of RAM available on your computer,
you might want to choose a small dataset (less than 100 images)

6 DroneDeploy: https://dronedeploy.com
7 DJI GS Pro: https://www.dji.com/ground-station-pro
8 QGroundControl: http://qgroundcontrol.com
9 OpenDroneMap Community Forum - Datasets: https://community.open-

dronemap.org/c/datasets

36

PROCESSING DATASETS

to start with. Memory requirements for processing are mostly
proportional to the number of images and there are no reliable
benchmarks at the time of writing that can tell you exactly how
much memory you will need ahead of time. So the best way is
to start small and gradually increase. Some task options can
also affect memory requirements. Task options are covered in
detail in the Task Options in Depth chapter.

File Requirements

Currently the software only supports JPEG files. Multiband
files such as .TIFF are currently not supported at the time of
writing, but efforts are underway10.

The images can come from different cameras and can be
taken at different angles. Most drone and phone cameras will
also add geolocation information in the JPEG files in the form
of Exchangeable Image File Format (EXIF) tags. EXIF tags
are small pieces of information embedded within an image,
which often times include the geographical location of where
a picture was taken. Geolocation information is required to
produce georeferenced orthophotos and elevation models, but
is not required for creating point clouds and 3D models. You
can use pictures that have no geolocation information, but you
will receive a warning that an orthophoto cannot be created.

If you have pictures with no geolocation information, you
can either use a Ground Control Point (GCP) file or a tool
such as exiftool11 to add geolocation information to the images
individually. GCPs are covered in more detail in the Ground

10 Add support for GeoTIFF images: https://github.com/OpenDroneMap/OD-
M/issues/865

11 Exiftool: https://www.sno.phy.queensu.ca/~phil/exiftool/

37

OPENDRONEMAP: THE MISSING GUIDE

Control Points chapter.
You can use GIMP12 to check whether your images have

geolocation information. If you open an image with GIMP,
press the Imagemenu, then go toMetadata—ViewMetadata.
From the EXIF tab you should be able to find the GPSAltitude,
GPSLatitude and GPSLongitude tags. If you don’t see them,
the image does not have geolocation information. You can also
modify or add GPS information for a single image from GIMP
by using the Image — Metadata — Edit Metadata panel. It
can be lengthy to add geolocation for many images with GIMP,
so if you have many images exiftool is a better tool. We cover
batch geotagging of images with exiftool in The Command Line
chapter.

Process Tasks

Simply press the Select Images and GCP button or drag and
drop your images in a project. You can also press the button
multiple times to add files from multiple folders.

12 GIMP: https://www.gimp.org

38

PROCESSING DATASETS

WebODM’s new task panel

There are a few settings you can choose:
• Name: a label for the task.
• Processing Node: Auto will simply pick a processing

node for you (the node with the least number of running
tasks will be picked first). Otherwise you can manually
select a processing node.

• Options: you can choose one from a predefined list
of presets. You can hover your mouse cursor over the
currently selected preset to see what options are being
affected. Several default presets are available, but you are
encouraged to experiment and create your own presets.
Pressing the button next to the preset list brings up the edit
task options panel, while pressing the arrow button next to
it allows you to save, edit or remove existing presets. Task
options are covered in detail in the Task Options in Depth

39

OPENDRONEMAP: THE MISSING GUIDE

chapter. For now simply choose the Default preset.
• Resize Images: for reducing storage requirements, lower-

ing memory usage and increasing processing speed, at the
expense of potentially lower quality results, you can choose
to resize your images prior to processing.

When you are ready, press Review and then Start Processing.
After processing starts:

1. Images are uploaded to the app/media folder within
WebODM.Note that this folder is not accessible from your
computer unless you passed the –media-dir parameter
when starting WebODM as explained at the end of the
“Installing The Software” chapter.

2. A processing node is selected and the images are sent to
the processing node. If this seems redundant (why not
upload directly to the processing node?) remember that
processing nodes can be located on remote computers.

3. A task is started and information such as time elapsed and
console output are refreshed every few seconds.

Once the task is completed the results are transferred from the
processing node to WebODM. Often a copy of the task results
is kept on the processing node for a period of time (typically 2
days). This allows WebODM to restart tasks from the middle
of processing.

40

PROCESSING DATASETS

Results can be downloaded or viewed directly from one of two
interfaces:

• View Map: displays a 2D map where orthophotos and
elevation models can be explored. Tools are available for
generating contours, making volume measurements and
more.

• View 3D Model: shows an interactive point cloud vi-
sualization. If a textured model is available, it can be
toggled for inspection. Various tools can be used to make
measurements, create elevation profiles, clip areas of the
point cloud and more.

If a project contains multiple tasks, clicking the View Map
button from the top right of each project displays orthophotos
and elevation models of all tasks in the project simultaneously.

41

OPENDRONEMAP: THE MISSING GUIDE

Map View

3D View

Output Results

If you download the results by pressing the Download Assets
— All Assets button you will find an archive containing several
directories:

42

PROCESSING DATASETS

• dsm_tiles contains the tiles for the color shaded digital
surface model (if one was generated). Tiles can be used to
display results on the web by using a viewer such as Cesium
or Leaflet.

• dtm_tiles same as above, but for the digital terrain model.
• orthophoto_tiles same as above, but for the orthophoto.
• odm_dem stores the digital elevation model files.
• odm_georeferencing contains the dense point clouds.
• odm_texturing stores the textured 3D model (both a

georeferenced version and a non-georeferenced version).
• entwine_pointcloud is a representation of the point

cloud that can be streamed efficiently over the web using a
viewer such as plas.io or potree13.

Share With Others

Pressing the Share button from eitherMapView or 3DModel
will generate links that can be shared publicly with others. Note
that the links will only work if WebODM has been installed on
a server with a public IP address. If you are running WebODM
on your local computer, you will not be able to share those links
with people (unless you have configured the proper forwarding
rules on your router/firewall). Typically if you want to share
tasks with others you should install WebODM on a server.

13 Viewing Entwine Data: https://entwine.io/quickstart.html#viewing-the-
data

43

OPENDRONEMAP: THE MISSING GUIDE

Export To Another WebODM

Tasks can also be downloaded and imported betweenWebODM
installations. To do that, simply download a task assets by
pressing Download Assets — All Assets and subsequently
pressing the Import button from the Dashboard.

Manage Plugins

Some functionality in WebODM is implemented via plugins.
By default many plugins are enabled, but they can be toggled
off by visiting Administration — Plugins.

Change The Look & Feel

You can customize the colors, logos and names of WebODM by
visiting the Administration — Theme and Administration
— Brand panels.

Create New Users

You can create user accounts (and groups) for people in your
organization by visiting the Administration — Accounts
panel.

Manage Permissions

You can manage who has access to which projects, who can cre-
ate new projects and many other permissions. The permission
settings can be set within the Administration — Application
panel. Click Projects, then select the project you want to

44

PROCESSING DATASETS

modify. Then click the Object Permissions button from the
top right section of the screen.

Object Permissions button

By default a project is owned by the user that created it. All
tasks part of a project inherit the permissions from that project.
Admin users (also called superusers) in the system have access
to all resources, while normal users have only access to the
tasks they have created. To share a project between users in the
WebODM system you can type the name of a specific user or
a group in the appropriate box and press the Manage User or
Manage Group button respectively.

How Does WebODM Process Images?

If this was the first task you’ve ever processed, or if you can
remember the first time you processed one, it’s likely that at
some point you had a woah! moment: how could a computer
take simple 2D images and turn them into georeferenced
mosaics, 3D models and point clouds?

That’s what we’ll find out in the next chapter.

45

6

The Processing Pipeline

Going from images to 3D models and orthophotos is a process
best visualized as a series of incremental steps. Each step relies
on the work of previous steps.

ODM’s processing pipeline

In this chapter we will explore an overview of the pipeline. We
will not cover too many details, as each step’s behavior can be
tweaked by changing the task options. We will discuss in detail
of how task options affect the inner workings of each step in
the next chapter.

46

THE PROCESSING PIPELINE

Load Dataset

Images can be corrupted. They may contain full or partial GPS
coordinates (embedded within the EXIF tags). This step counts
the images, extracts dimensions and parses GPS information
from all available images.

Input: images + GCP (optional)
Output: image database

Structure From Motion

Structure From Motion (SFM) is a photogrammetry technique
for estimating 3D objects (structures) from overlapping image
sequences (from the motion of a camera taking pictures). At a
very high level, the idea of SFM begins from the intuition that
we can perceive a whole lot of information about a scene by
just observing it from multiple view points. Using perspective
geometry and optics (fascinating fields which would each
require a book to cover in depth), the position and angle of
the camera can be recovered for every picture. Astute readers
might wonder why this is needed. After all, doesn’t every
picture already embed GPS and gimbal information? One
of the problems is that GPS information (without Real Time
Kinematics, a technique used to increaseGPS accuracy) is not all
that precise and gimbal information is not always present. SFM
is much more accurate in calculating the position of cameras.
As a bonus, it doesn’t require any GPS information at all.

SFM performs several sequential steps:
• Extracts the camera information from the images’ EXIF

tags (if they are available). The optics equations require

47

OPENDRONEMAP: THE MISSING GUIDE

a good estimate of the camera parameters (focal length,
sensor size and others) for the process to work. The
information from EXIF tags is used as a best guess initial
estimate which is refined in later steps.

• Each image is scanned for easily identifiable features such
as edges, points of interest and other unique objects. This
is a crucial step and it’s critically important to understand
why. Take a look at the image below:

Two pictures of a white wall (top) vs. two pictures of a shark
(bottom). Can you tell the camera moved left?

If we take two pictures of a white wall, we cannot tell how they
relate to each other (did we move the camera left or right?).
Compare them with two pictures that share an identifiable
object.

48

THE PROCESSING PIPELINE

In the second set of pictures we can tell that our camera has
moved left (and tilted a bit). A computer cannot recognize
any movement in the white wall pictures, which makes it
impossible to solve the SFM problem. Next time you wonder
why that grass field shot at low altitude does not want to
be reconstructed, you’ll know why (not enough identifiable
features)!

• Image features from the previous step are now compared
with each other. When many features are shared between
two images (the same objects appear in two pictures) the
images are matched. Some optimizations are employed to
remove likely impossible candidates, such as images that
are far away from each other using GPS information.

• Starting from a single pair of images and progressively
adding more images, the program begins to recover the
positions and angles of the cameras as well as recording
a sparse collection of triangulated points (a sparse point
cloud). This is accomplished using knowledge of optics
(the physics laws that govern light and in this case its
interaction with camera lenses), perspective geometry (the
studies about representing 3D objects on 2D surfaces) and
approximation methods for generating a consistent esti-
mate of the camera information, orientation and position
of the resulting triangulated points.

49

OPENDRONEMAP: THE MISSING GUIDE

The SFM problem. What kind of camera took these pictures and
where was the camera when the pictures were taken?

Photogrammetry is not a new field and its history dates back
hundreds of years14. It’s just that we’ve recently discovered
that computers can be really good (and fast) at it. For those
interested in learning more about SFM, coursera.org has some
really good lectures15. ODM uses a software package called
OpenSfM16 (Open Structure From Motion) for efficiently
solving the SFM problem.

Input: images + GCP (optional)
Output: camera poses + sparse point cloud + transform

14 History of Photogrammetry: http://wayback.archive-
it.org/all/20090227061949/http://www.ferris.edu/faculty/burtchr/-
sure340/notes/History.pdf

15 Robotics: Perception: https://www.coursera.org/learn/robotics-perception
16 OpenSfM: https://github.com/mapillary/OpenSfM/

50

THE PROCESSING PIPELINE

Multi View Stereo

While SFM focuses mostly on the estimation of camera poses,
Multi-View Stereo (MVS) focuses on the reconstruction of
3D models from multiple overlapping image pairs. MVS
programs expect that information about cameras has already
been computed and this allows them to focus on one thing:
create a highly detailed set of 3D points (a dense point cloud).
ODM currently offers two options for MVS:

• Multi-View Environment (MVE), a software suite devel-
oped at TU Darmstadt17.

• OpenSfM, which we already discussed, has a dense recon-
struction feature also.

Lots of 3D points make a dense point cloud

Input: images + camera poses + (sometimes) sparse point cloud
Output: dense point cloud

17 Multi-View Environment: https://github.com/simonfuhrmann/mve

51

OPENDRONEMAP: THE MISSING GUIDE

Meshing

When you think of a 3D model you most likely imagine the type
of models you see in videogames or movies. These models are
more precisely called polygonal meshes or meshes for short.

3D mesh

Whenever a 3D model is scanned or derived from a photogram-
metry process, the result is typically represented with 3D points.
To go from 3D points to polygonal meshes we have to perform
two steps:

1. “Connect the dots” using many triangles to obtain a mesh.
Points may be moved or eliminated to create a better
looking mesh.

2. Add color to the mesh (a process referred to as texturing).

Meshing is the process of “connecting the dots”. ODM supports
two different algorithms for meshing and uses one or the other
depending on the situation and the user settings:

1. Screened Poisson Surface Reconstruction is a robust,
memory efficient and battle tested algorithm for creating

52

THE PROCESSING PIPELINE

3D surfaces byMichael Kazhdan18. It’s used for generating
full 3D models with a high degree of accuracy.

2. dem2mesh19 is a program I developed for generating 2.5D
meshes. 2.5D meshes are meshes that look 3D, but are
simple extrusions of a 2D surface. These are used for
generating orthophotos, as orthophotos do not require
full 3D models for rendering and results often tend to look
better.

18 Screened Poisson Surface Reconstruction: http://www.cs.jhu.edu/~misha/-
Code/PoissonRecon/Version8.0/

19 dem2mesh: https://github.com/OpenDroneMap/dem2mesh

53

OPENDRONEMAP: THE MISSING GUIDE

From 3D points to mesh

Input: dense or sparse point cloud
Output: 3D and 2.5D meshes

Texturing

At this point the mesh does not have any colors associated with
it. It’s just a polygon soup. Texturing is the process of adding
colors to meshes. It does so by using specially computed images

54

THE PROCESSING PIPELINE

(texture images) and by assigning each polygon to a section
of the texture images. The process of creating the texture
images and creating the associated mappings is performed by
MvsTexturing20, a software also developed at TU Darmstadt.
At a very high level the program works as follows:

• Loads camera poses and images from the SFM process.
• Loads the mesh.
• For each polygon in the mesh, it finds the best image to fill

it.
• It creates one or more texture images based on the infor-

mation from the step above, also checking and attempting
to remove moving objects (cats, cars, etc.).

• Sections of the texture images are color adjusted to com-
pensate for differences in illumination.

• The borders (seams) between neighboring sections are
blended to reduce color differences.

Textured mesh

20 MvsTexturing: https://github.com/nmoehrle/mvs-texturing

55

OPENDRONEMAP: THE MISSING GUIDE

Due to some randomness in the texturing algorithm, you are
not guaranteed to get the same results if you run the process
twice on the same mesh. That’s why you might notice that the
same dataset processed twice yields slightly different looking
models (and orthophotos).

Input: images + camera poses + meshes
Output: textured meshes

Georeferencing

Up to this point all outputs have been represented using a
local coordinate system (a made up coordinate system). A local
coordinate system has no correlation to real world positions.
Georeferencing is the process of converting (transforming)
a local coordinate system into a world coordinate system.
ODM can do this only if location information about the
world is available, either via GPS coordinates embedded in
the input images or a GCP file. When GPS coordinates are
available, they are incorporated during the SFM step to align
the reconstruction as to minimize the error between all the GPS
locations and the computed camera positions. When GCPs are
available, the GPS information is ignored and GCPs are used
for the alignment instead. One of the outputs of the SFM step is
a transform file, which allows the georeferencing step to convert
point clouds and 3D models from local to world coordinates.

Once georeferenced, the point cloud is used to generate
an estimate of the geographical boundaries of the dataset.
These boundaries are used in subsequent steps for cropping
orthophotos and digital elevation models (DEMs).

56

THE PROCESSING PIPELINE

Input: transform + point cloud + textured meshes
Output: georeferenced point cloud + textured meshes + crop
boundaries

Digital Elevation Model Processing

Point clouds are cool to look at, but much analysis is usually
done using simpler 2D DEMs, which represent XY coordi-
nates as pixel locations on the screen and pixel intensities (or
colors) as elevation values. During this step ODM takes the
georeferenced point cloud and extracts a surfacemodel by using
an inverse distance weighting interpolation method. If there
are any holes in the model (perhaps an area is missing), they
are filled using interpolation. Finally, the model is smoothed
using a median filter to remove noise (bad values). With certain
settings it can also attempts to classify the point cloud into
ground vs. non-ground points and generate a terrain model by
first removing all non-ground points. Finally, the results are
cropped.

57

OPENDRONEMAP: THE MISSING GUIDE

Digital surface model

Input: georeferenced point cloud + crop boundaries
Output: digital surface models + digital terrain models +
classified georeferenced point cloud

Orthophoto Processing

The orthophoto is generated by taking a picture of the textured
3D mesh from the top. A dedicated program loads the textured
mesh into an orthographic scene and saves the result to
an image using the appropriate resolution. The image is
then georeferenced and converted to a GeoTIFF using the
information computed in the georeferencing step. Finally, the
result is cropped.

58

THE PROCESSING PIPELINE

Orthographic camera taking a picture of the 3D model from the top

Orthophoto

Input: textured mesh + crop boundaries
Output: orthophoto

We covered a general overview of the processing pipeline to de-

59

OPENDRONEMAP: THE MISSING GUIDE

scribe how ODM goes from images to end results. We avoided
going into too much detail about the specific implementation
of each step, since any effort to discuss implementation details
would inevitably be inaccurate or even obsolete by the time this
book is completed. The beauty of open source is that you don’t
need a manual to tell you the details of the implementation.
Those interested can and are encouraged to go look for details
directly from the source code21.

Now we turn our eyes to one of the most practical and
important topics of this book: mastering the long list of task
options and understanding what in the world each one does.

21 ODM Stages Source Code: https://github.com/OpenDroneMap/OD-
M/tree/master/stages

60

7

Task Options in Depth

There are several components involved in the data processing
pipeline. Each component has several adjustable settings that
influence the output. The software exposes a subset of these
available knobs through various options. When creating a task,
a user can choose to tweak one or more options to change the
behavior of the pipeline.

61

OPENDRONEMAP: THE MISSING GUIDE

Options as shown in WebODM when creating a task

If the list seems overwhelming, just remember that this is a
subset of all possible options that could be available from the
various components of the data pipeline! This should raise
some curiosity. Hidden features and processing capabilities
could be hiding in the source code of OpenDroneMap, in the
form of an option not yet exposed! The software exposes only
those options that seem to have the biggest impact on results, or

62

TASK OPTIONS IN DEPTH

those necessary to handle different workflows. But many, many
more options, under the hood, remain unexposed in order to
keep their number somewhat manageable.

Tuning options is more art than science. There are no clear
guidelines on how to tune options to achieve optimal results.
That’s mostly because the best options for a certain dataset do
not automatically transfer over to another. Given the big variety
of possible scenes, cameras and mission planning strategies, it
would be immensely time consuming to write an exhaustive
guide. Plus, the tools are evolving quickly, so by the time such
guide would be written, it would already be obsolete. But fear
not!

This chapter is about understanding in detail what each
option does. By the end of the chapter you’ll be able to quickly
improve your results, explain why certain models turn out the
way they do and know what to tweak if the results don’t turn
out the way you want.

A few of these options might be missing from the graphical
interface and might be available only from the command line.
This is because sometimes the option does notmake sense in the
context of the interface workflow, or it’s simply not supported.

Feel free to jump around and use this chapter as a reference.
As the software gets better, some of these options might
disappear from future versions and new oneswill be introduced.
The list below is taken from the software as of June 26th 2019.
I will try my best to keep up with updates to the software and I
plan to start a second edition of the book after it’s published.
In alphabetical order:

63

OPENDRONEMAP: THE MISSING GUIDE

build-overviews

When set, overviews are added to the orthophoto. This does
not affect other 2D outputs such as DEMs. Overviews are an
optimization available for GeoTIFFs that reduces the time it
takes to open them, for the tradeoff of a larger filesize and
some computational time. Think of overviews as downsized
copies of the orthophoto, stored inside the orthophoto file itself.
Overviews are useful when opening the orthophoto in GIS
programs that support them, such as QGIS22 (a popular free
and open source GIS software). When overviews are available,
the viewer program can load the overview most appropriate
for the current zoom level instead of loading the entire file.
If it takes forever to display a 400MB orthophoto in a GIS
program, it’s probably because overviews weren’t built! ODM
creates overviews at 1/2, 1/4, 1/8 and 1/16 of the original
resolution using an average interpolation. If an orthophoto
is 1000x1000 pixels, build-overviews will store copies of the
same orthophoto at 500, 250, 125 and 62 pixels resolution for
faster visualization.

cameras

By default, during the SFM process, camera parameters are
estimated from the input images. By using this option it’s
possible to choose a precomputed set of camera parameters
instead, either as a path to a cameras.json file or by providing
the contents of a cameras.json file. A cameras.json file is
always computed after processing a dataset, so you can use

22 QGIS: https://qgis.org

64

TASK OPTIONS IN DEPTH

the camera parameters computed from one dataset to process
another. The cameras.json file can also be generated using a
special calibration target and a calibration software. Specifying
a precomputed set of camera parameters can be useful to
increase the accuracy of certain reconstructions, especially
those that exhibit doming effects (point clouds that look concave
or convex when they should be straight). We cover usage of this
option in much more detail in the Camera Calibration chapter.

crop

In its raw form, the orthophoto contains irregular, jagged
edges. These are the result of the texturing program attempting
to fill areas that have little or no information. Cropping
attempts to remove those edges to give us a nice, smooth
looking orthophoto. First, the boundaries of the orthophoto
are estimated by looking at the point cloud. The point cloud is
first thinned and filtered to remove outliers. Then a polygon
encompassing the result is saved in odm_georeferencing/odm_geo-
referenced_model.bounds.gpkg. This polygon is further smoothed
and shrunk by the value specified in the crop option (as a
value in meters). The final polygon is then used to crop the
orthophoto.

65

OPENDRONEMAP: THE MISSING GUIDE

Point cloud (left) and shrinked bounds that define the crop area
(right)

Estimating where the bounds are is not a perfect science.
Sometimes the area of an orthophoto that looks perfectly good
will be removed in the cropping process. This option can be
set to zero to skip cropping. For very large datasets, skipping
crop can lower the run-time, since no computations have to be
performed to estimate boundaries.

debug

Enable additional debugmessages in the console output. Mostly
useful for development purposes.

dem-decimation

All DEMs are computed from the point cloud output. The
larger the point cloud, the longer it takes to compute a DEM.
To speed things up, at the trade-off of possible accuracy loss,
this option reduces (decimates) the number of points used to
compute DEMs. The value specifies how many points to “skip”
during the decimation. Let’s look at an example by setting this
option to 3. By taking all the points in the point cloud and
placing them in a straight line, the program will reduce the

66

TASK OPTIONS IN DEPTH

number of points by keeping one every three.

Only black points are included. Gray points are skipped

Thisway ~33% of all points are included, and ~66% are removed.
If you use a value of 1 (the default), then all points are included.
If you use a value of 50, then ~2% of the original points are kept
and ~98% are removed. You can compute this percentage by
doing:

(1 / decimation) * 100

It should be noted that points are skipped sequentially and do
not take into account spatial information, so this option should
be used with care. Decimation also does not affect the original
point cloud. The decimation is only used for the purpose of
computing DEMs.

dem-euclidean-map

An euclidean map is a georeferenced image derived from DEMs
(before any holes are filled) where each pixel represents the
geometric distance of each pixel to the nearest void, null or
NODATA pixel. It’s an indicator (map) of how far a value in

67

OPENDRONEMAP: THE MISSING GUIDE

the DEM is to an area where there are no values. This can
be useful in cases when a person wishes to know which areas
of a DEM were derived from actual point cloud values and
which ones were filled with interpolation. Looking at the
euclidean map, every pixel that has a value of zero indicates
that the corresponding location on the DEM was filled with
interpolation (because the distance of a NODATA pixel to itself
is zero).

DEM before hole filling (left) and corresponding euclidean map
(right)

Euclidean map results are stored in the odm_dem directory.

dem-gapfill-steps

The process of going from point cloud to DEMs is not as
straightforward as it may seem. Since DEMs are rasters
(images), they have cells (pixels). Each cell, should have a value.
Depending on the resolution of the raster, certain cells may
have zero, one or more points that fall within it. All cells need
a value, even if no points fall directly into it, otherwise there
will be empty areas (gaps) in the DEM! One way to overcome
this is to use a radius around each cell. Every point that falls

68

TASK OPTIONS IN DEPTH

within the radius is considered part of the cell.

Pixels and points (left), radius of 0.5 (middle) and radius of 1 (right)

But how big should the radius be? If too small, as in the 0.5
radius example above, some cells might remain empty. If too
big, there will be too much smoothing and accuracy will suffer.
Since different point clouds have varying degrees of density, one
solution is to compute multiple DEMs with different radiuses
and stack them.

Gap fill interpolation with 2 DEM layers

Results with smaller radiuses (more accuracy, more gaps) are
placed at the top, while results with bigger radiuses (less
accuracy, less gaps) are placed at the bottom. If there are still

69

OPENDRONEMAP: THE MISSING GUIDE

gaps at the end of this process, any remaining gaps are filled
using a less accurate smoothed nearest neighbor interpolation.

How many layers should there be? However many this option
says there should be. The initial value for the radius for the first
layer is set to half of the raster resolution. Subsequent layers
have twice the radius of their predecessors.

The local gridding method used to compute individual grid
cell values is the same as the one used in the open source
Points2Grid23 project.

dem-resolution

This option specifies the output resolution of DEMs in cm /
pixel.

Each square represents a pixel in a raster DEM

As an example, if the area covered by the point cloud is 100x50
meters and dem-resolution is set to 10 cm / pixel, the final
image size of the DEM in pixels can be calculated by:

23 Points2Grid: A Local Gridding Method for DEM Generation from Lidar
Point Cloud Data https://opentopography.org/otsoftware/points2grid

70

TASK OPTIONS IN DEPTH

(100 meters * 100 cm/meter) / 10 cm/pixel

= 1000 pixels

(50 meters * 100 cm/meter) / 10 cm/pixel

= 500 pixels

So the output DEM will be an image of 1000x500 pixels. The
multiplication by 100 in the parenthesis is necessary because
there are 100 centimeters in a meter.

depthmap-resolution

A depthmap is an image containing information relative to the
distance of objects in a scene.

Image and corresponding depthmap. Darker areas are closer to the
camera.

Image courtesy of Dominicus, Cubic Structure, CC BY-SA 3.0

Depthmap images are computed during the photogrammetry
process to compute the dense point cloud. The higher the
resolution of depthmaps, the longer the run-time to triangulate
points. Higher resolution depthmaps increase the number
of points, but also increase the amount of noise. Increasing

71

OPENDRONEMAP: THE MISSING GUIDE

the depthmap resolution will increase run-time quadratically
(twice the resolution will take 4x the time to compute). If you
need to change the density of your point clouds, this is the
option to tweak. Point clouds are the basis for 3Dmodels, which
in turn are used to generate orthophotos. When mapping urban
areas, if the buildings come out with holes, look malformed or
“wavy”, a higher density point cloud could help obtain better
looking buildings. Increasing this value too much can increase
noise, so there’s a subtle balance between point density and
quality of results.

dsm

This option generates a digital surface model (DSM). DSMs
are generated by taking the maximum elevation values in a
point cloud, including both terrain and other structures such
as buildings or trees. If two points fall on top of each other,
only the tallest point is used. Gaps in the point cloud are filled
using the process described in dem-gapfill-steps. The result
is stored in odm_dem/dsm.tif.

dtm

This option generates a digital terrain model (DTM). DTMs
are generated by classifying the point cloud using a simple
morphological filter24 (SMRF). Setting this option implicitly
turns on the pc-classify option, which classifies point either
as ground or non-ground. Non-ground points are discarded
before computing the DTM. Gaps in the point cloud are filled

24 smrf: A Simple Morphological Filter for Ground Identification of LIDAR
Data. http://tpingel.org/code/smrf/smrf.html

72

TASK OPTIONS IN DEPTH

using the process described in dem-gapfill-steps. Formore in-
formation on tweaking the SMRF classification algorithm, see
the pc-classify option. The result is stored in odm_dem/dtm.tif.

DSM (left) vs. DTM (right)

end-with

The processing pipeline is composed of several steps and
processing is executed sequentially. Sometimes the results don’t
turn out as expected or a user might wish to compare the results
of using different options. Since changing an option sometimes
affects only a certain stage of the pipeline, there’s no need to
execute every single step all the way to the end. By using this
option, the program will stop the execution at the chosen step.
Possible values (in order of execution) are:

• dataset
• split
• merge
• opensfm (Structure From Motion)
• mve (Multi-View Stereo)
• odm_filterpoints
• odm_meshing
• odm_25dmeshing
• mvs_texturing

73

OPENDRONEMAP: THE MISSING GUIDE

• odm_georeferencing
• odm_dem
• odm_orthophoto

This option is often used in conjunction with rerun-from.

fast-orthophoto

Sometimes all that a user wants is an orthophoto, generated
as fast as possible, using the least amount of resources. If we
revisit the overview of the processing pipeline, this is how it’s
generally executed:

Processing Pipeline (normal)

When fast-orthophoto is used, the program is instructed to
skip the expensive MVS step.

Processing Pipeline (fast-orthophoto)

74

TASK OPTIONS IN DEPTH

Recall that SFM computes a sparse point cloud, while MVS
generates a refined, denser point cloud.

Sparse (top) vs. dense (bottom) point cloud outputs

Both point clouds can be used to generate a mesh. However,
it’s better to have more points, as meshes can be created with
more details. In the dense point cloud screenshot above, the

75

OPENDRONEMAP: THE MISSING GUIDE

building in themiddle of the scene is well defined, but it’s almost
missing in the sparse point cloud. Buildings are especially
difficult to model without a dense point cloud, so this option
tends to yield poor results in urban areas. For flat areas such as
farmlands, however, the results are quite good, since there are
fewer buildings or structures to model. This option also tends
to work well with images captured from a really high altitude
or with images that have less than 50% overlap (such as many
historical aerial images).

76

TASK OPTIONS IN DEPTH

Normal (top) vs. fast-orthophoto (bottom)

Comparing the two images above, the building on the top is
much more defined than the bottom, but the terrain between
the two is almost identical.

This option can make a big difference in run-time, especially
for very large datasets.

77

OPENDRONEMAP: THE MISSING GUIDE

gcp

By default the program looks for a file named gcp_list.txt in the
project directory. If it exists, it’s used as a ground control point
file to increase the georeferencing accuracy of the results. With
this option users can specify an alternate path for the GCP file.
Ground control points and the GCP file format are explained
in more detail in the Ground Control Points chapter.

This option is not shown in WebODM and is automatically
set if a GCP file is uploaded with a dataset.

help

Shows all possible options and exits.

ignore-gsd

To achieve good processing speed, the program relies on
optimizations. One of these optimizations uses the average
Ground Sampling Distance (GSD) value from all images (plus
some buffer) to achieve two goals:

1) Put a cap on the resolution of orthophotos and DEMs.
2) Compute a good target size for the images when texturing
3D models.

The reason for placing a cap on resolutions is simple. While the
program allows output resolutions to be set via orthophoto-
resolution and dem-resolution, it can be tedious to estimate
what the maximum resolution can be. For example, if photos
are captured at 400ft, it makes no sense to set the resolution

78

TASK OPTIONS IN DEPTH

to 0.1 cm / pixel. The photos don’t contain enough details to
achieve that target resolution. So the optimization automati-
cally lowers the resolution to a more reasonable value.

Similarly, when the program knows that the orthophoto is
going to have a target resolution of 5 cm / pixel, it’s wasteful
to use full resolution images to create the textures for the 3D
models. The orthophoto will be downsized anyway, so the
program resizes the images prior to texturing, speeding things
up and lowering memory usage.

There are a few caveats with this approach:

1) The GSD value is computed by averaging the GSD value
of all images in the scene. Furthermore, the flight altitude
necessary for the computation is estimated from an average
plane height computed from the sparse point cloud.

Average plane height (dotted gray line) and terrain (black line)

This means areas that have large changes in elevation (hills,
mountains) might turn into an inaccurate estimate for the GSD
value. In such scenario, the resolution could be possibly capped
at a value lower than ideal.

2) To color a mesh, the texturing program has to choose the
best section of a photo, from a set of photos. To decide which
photo and section is best, the algorithm uses several factors.

79

OPENDRONEMAP: THE MISSING GUIDE

When texturing-data-term is set to gmi (the default), one of
these factors is an indicator of sharpness. Resizing images prior
to texturing has the side effect of reducing the sharpness of all
images, thus decreasing the importance of this factor relative
to others. This can result in more blurred areas.

When noticing excessive blur in an orthophoto, or when the
resolution of the outputs is lower than expected, turning on
ignore-gsd can improve results. The trade-off is longer run-
time and higher memory usage.

matcher-distance

The SFM process involves matching image pairs, that is, finding
images that share features between them (images showing
the same objects). The naive, brute force approach is to
compare each image against each other image. This results
in an exhaustive, but slow search. Finding all images pairs in a
100 images dataset requires a lot of comparisons. To be exact,
it requires:

100 * (100 - 1)

= 9900 comparisons

This number increases rapidly with larger datasets. To speed
things up, the program uses an optimization. The core idea is
that, when processing datasets collected in a uniform pattern,
most images will be paired with images that are within a short
distance from each other. Since each image often contains GPS
location information, the program can set a distance threshold
for which image pairs should not be considered. This is called

80

TASK OPTIONS IN DEPTH

preemptive matching.

Dots represent approximate image locations, extracted from EXIF
tags. The md value represents the maximum distance that the image
p1 will search for other images. Images outside of the circle will not

be considered for matching

The distance is expressed in meters. It can be set to zero to
disable it. If no location information is embedded in the EXIF
tags of the images, this option is disabled. This option works
in conjunction with the matcher-neighbors option.

matcher-neighbors

Similarly to matcher-distance, this option performs preemp-
tive matching by considering only the nearest neighbors of each
image. The illustration below shows the result of setting this
option to 8:

81

OPENDRONEMAP: THE MISSING GUIDE

Dots represent approximate image locations, extracted from EXIF
tags. When the matcher-neighbors is set to 8, only the 8 nearest
neighbors (highlighted in gray) are considered for matching with

image p1

For datasets with lots of overlap, it can be beneficial to in-
crease this value since it’s likely that valid matches will not
be taken into consideration and decrease the accuracy of the
reconstruction. It can be set to zero to disable it. If no location
information is embedded in the EXIF tags of the images, this
option is disabled. This option works in conjunction with the
matcher-distance option.

max-concurrency

By default the program will attempt to use all available CPU
resources. There are scenarios where this might not be
desirable, for example on shared servers or when wanting to
use the computer for other tasks while processing. This option
attempts (but does not guarantee) to limit themaximumnumber
of CPU cores that will be used at the same time.

82

TASK OPTIONS IN DEPTH

merge

This option controls what assets should be merged during the
merge step of the split-merge pipeline. By default all available
assets are merged, but users can choose to merge only specific
ones. We cover this option in more detail in the Processing Large
Datasets chapter.

mesh-octree-depth

When it comes to generating 3D models, this is probably
the most important option. It specifies a key variable for
the Screened Poisson Reconstruction25 algorithm, which is
responsible for generating a mesh from the point cloud. The
details of the algorithm are fascinating, but probably outside
the scope of this chapter. For the curious ones, the best
description I could find is available on Wikipedia under the
Surface Reconstruction section at https://en.wikipedia.org/wiki/
Poisson%27s_equation

To understand how this option affects the output, it helps
to visually understand the concept of an octree. First, octree
means eight-tree (okta is eight in Greek). Why eight? Because at
each level (or depth) of the tree, each box (or node or branch) of
the tree is divided in eight parts. At the first level there’s only
one branch. At the second level there’s 8. At the third there’s
64 and so forth.

25 Screened Poisson Reconstruction: watertight surfaces from oriented point
sets. http://www.cs.jhu.edu/~misha/MyPapers/ToG13.pdf

83

https://en.wikipedia.org/wiki/Poisson's_equation
https://en.wikipedia.org/wiki/Poisson's_equation

OPENDRONEMAP: THE MISSING GUIDE

An octree with depth 1, 2 and 3

Lower depths in an octree allow finer details to be captured.

Points and resulting octree.
Image from http://www.cs.jhu.edu/~misha/Code/

The practical aspect of this option is that the higher the
value, the finer the resulting mesh will be. The trade-off is
exponentially longer run-time and memory usage. The default
value of 9 works well for a lot of different cases. Flat areas can
benefit from lower values (6-8) and urban areas can improve by
setting this value higher (10-12). When increasing this option,
mesh-size should also be increased as finer meshes require
more triangles.

84

TASK OPTIONS IN DEPTH

mesh-octree-depth 6 and mesh-size 10000 (top) vs.
mesh-octree-depth 11 and mesh-size 1000000 (bottom)

85

OPENDRONEMAP: THE MISSING GUIDE

mesh-point-weight

Similarly to mesh-octree-depth, this option specifies a key
variable for the Screened Poisson Reconstruction algorithm,
which is responsible for generating amesh from the point cloud.
It affects the mesh by giving more importance to the location
of the points. In practical terms, higher values can help create
higher fidelity models, but can also lead to the generation of
artifacts (undesired alterations). In general the default value
works fairly well.

86

TASK OPTIONS IN DEPTH

mesh-point-weight set to 0 (top) and 20 (bottom). Notice the lack of
edges in the top image and the excessive bumps in the bottom image

87

OPENDRONEMAP: THE MISSING GUIDE

mesh-samples

Similarly to mesh-octree-depth, this option specifies a key
variable for the Screened Poisson Reconstruction algorithm,
which is responsible for generating amesh from the point cloud.
It specifies how many points should fall within a node of the
octree during its construction. In practical terms, this value
should be tweaked between 1 and 20 to improve the smoothness
of a model. If there’s noise in the point cloud, this value should
be increased. If there’s little or no noise in the point cloud, this
value should be set to 1 (the default).

88

TASK OPTIONS IN DEPTH

mesh-samples set to 1 (top) 20 (bottom). Ideal values for this option
are between 1 and 20

89

OPENDRONEMAP: THE MISSING GUIDE

mesh-size

To keep memory usage and run-time under control, after a
mesh is generated the program simplifies it by setting an upper
limit on the number of triangles the mesh can contain. The
more triangles a mesh contains, the longer it takes to process it
in subsequent steps of the pipeline. A low triangle count can
sometimes degrade the quality of the mesh. If details seem to
be missing from the 3D model or sharp triangles are present,
increasing this option could improve results. This is especially
beneficial in urban areas where buildings require fine details
for more appealing results.

Effects of reducing the number of triangles in a mesh.
Image courtesy of Trevorgoodchild, Quadric error metric

simplification applied to the Stanford bunny, CC BY-SA 3.0

min-num-features

During the SFM process, images have to be matched into pairs.
The way the pairing happens is by means of finding matches
between features in the images. An example of a feature is the
corner of a building or the edge of a car. If the same feature is

90

TASK OPTIONS IN DEPTH

found to be present between two images, it’s used as evidence of
a possible match. But features can be ambiguous. An identical-
looking corner of a building between two images could be from
two corners of two different building that just happen to share
the same architecture style. So the program finds lots and lots
of features in each image and uses all of them to find possible
pairs. This option controls the minimum number of features
the program tries to finds in each image, thus increasing the
likelihood of finding matches between images. It does so by
progressively lowering certain threshold values, which lead to
more, but less ideal features.

Features (red points) and matches between overlapping images
(white lines). min-num-features controls the target number of red

points in each image

This option should be increased when trying to map areas that
have few distinguishable features, such as forest areas:

91

OPENDRONEMAP: THE MISSING GUIDE

Can you easily find many good features / reference points in the
image above? Neither can a computer. But increasing the number
of features can increase the chances of a match between images

Increasing this option results in longer run-time, but increases
the chances that a reconstruction will be properly generated.
In certain instances, the program might also be able to generate
only a partial reconstruction. In such cases users will notice that
some areas for which images exists do not appear in the final
results (a chunk of the orthophoto will appear to be missing).
Increasing this option could help find matches that generate a
more complete reconstruction.

An interesting side effect is that increasing this option also
increases the number of points in the sparse point cloud, so it
can be used in conjunction with fast-orthophoto to produce
slightly better results.

92

TASK OPTIONS IN DEPTH

mve-confidence

When the dense point cloud is computed using MVE (the
default), each point is assigned a confidence value between zero
and one. A value of zero indicates that the point is most likely
noise, while a value of one indicates that the point is most likely
a good point. Points below a certain confidence threshold are
discarded. Users can increase this option to decrease noise (but
potentially eliminate valid points) or decrease it to get more
complete point clouds (but potentially increase noise).

93

OPENDRONEMAP: THE MISSING GUIDE

Confidence set to 0.6 (top) and 0 (bottom). Notices some areas are
missing in the top image, but much more noise is present in the

bottom image

94

TASK OPTIONS IN DEPTH

opensfm-depthmap-method

When use-opensfm-dense is set, this option affects the point
cloud by specifying themethod used to compute depthmaps (see
depthmap-resolution for a brief discussion on depthmaps).
The three possible options are:

• PATCH_MATCH (default)
• PATCH_MATCH_SAMPLE
• BRUTE_FORCE

PATCH_MATCH and PATCH_MATCH_SAMPLE are faster,
but sometimes miss some valid points, which can result in
a point cloud with some empty areas. BRUTE_FORCE is
slower, but does a more exhaustive job and can produces
more complete results. The default value tends to work well
and users should switch to BRUTE_FORCE only if the point
cloud is missing significant chunks. The PATCH_MATCH
approaches are based on the paper Accurate Multiple View
3D Reconstruction Using Patch-Based Stereo for Large-
Scale Scenes26. PATCH_MATCH is slightly slower than
PATCH_MATCH_SAMPLE but tends to create slightly
denser point clouds.

opensfm-depthmap-min-patch-sd

When use-opensfm-dense is turned on and opensfm-
depthmap-method is set toPATCH_MATCH orPATCH_MATCH_SAM-
PLE this option controls a key variable that helps define areas
in the depthmaps that should be skipped for improving run-

26 Accurate Multiple View 3D Reconstruction Using Patch-Based Stereo for
Large-Scale Scenes. http://www.nlpr.ia.ac.cn/2013papers/gjkw/gk11.pdf

95

OPENDRONEMAP: THE MISSING GUIDE

time performance. Patches are simply small sections in an
image:

Patch in an image

During computation, input images are split into patches. Each
patch is assigned a variance value computed from its pixels.
The key idea is that areas in the image that are uniform (contain
similar values), such as the sky, contain little to no information
useful for triangulating points.

Patch with high variance (left) vs. patch with low variance (right)

Variance is simply standard deviation multiplied by itself.
So this option defines the minimum standard deviation that
an image patch must have during the OpenSfM depthmap
calculation process for it to be considered in the computation.
Setting this value too low will result in longer run-time, while

96

TASK OPTIONS IN DEPTH

setting this value too high could potentially make areas with
uniform values to be ignored. The screenshots below illustrates
this behavior:

97

OPENDRONEMAP: THE MISSING GUIDE

opensfm-depthmap-min-patch-sd set to 5 (top) and 2.5 (bottom).
Notice the lack of roads in the image on the left. Roads have

uniform colors (low variance). Setting a high value caused the roads
to disappear!

98

TASK OPTIONS IN DEPTH

orthophoto-bigtiff

BigTIFF is an extension of the TIFF format to support files
larger than 4GB. The possible values for this option are:

• YES: force the output orthophoto to use BigTIFF
• NO: force the output orthophoto to use classic TIFF
• IF_NEEDED: will use BigTIFF if it is needed (image larger

than 4GB and not using compression, see orthophoto-
compression)

• IF_SAFER (default): will use BigTIFF if the resulting file
might exceed 4GB. This is a heuristics thatmight not always
work depending on compression

The BigTIFF format is not backward compatible with classic
TIFF (programs compatible with TIFF do not necessarily
support BigTIFF). A viewer needs to have explicit support
for BigTIFF. Luckily most GIS programs support BigTIFF.
Some legacy applications however might not. If you use one of
these legacy applications, set this option to NO. If receiving a
TIFFAppendToStrip:Maximum TIFF file size exceeded error, the
heuristic used for IF_SAFER failed to guess the final size of
the image. In this case changing this option to YES can fix the
error.

orthophoto-compression

Compression is a method to save space in exchange for slightly
longer run-time. The possible values for this option are:

• JPEG: Uses JPEG compression with quality value of 75.
JPEG is a lossy compression method, meaning some image
quality is lost during compression.

99

OPENDRONEMAP: THE MISSING GUIDE

• LZW: Uses Lempel–Ziv–Welch compression. This is a
lossless compression method, meaning image quality is not
lost during compression.

• PACKBITS: This compression method, like LZW, is loss-
less. It’s arguably more supported than LZW, but achieves
less compression than LZW.

• DEFLATE (default): also referred as ZIP compression,
deflate is a lossless compression method. It tends to yield
slightly smaller file sizes when compared to LZW.

• LZMA: another lossless compression method.
• NONE: Skips compression. Speeds up the generation of

the orthophoto, but creates larger files.

orthophoto-cutline

By turning on this option the program will generate a cutline.
A cutline is a polygon within the orthophoto’s crop area that
attempts to follow the edges of features.

100

TASK OPTIONS IN DEPTH

Cutline

101

OPENDRONEMAP: THE MISSING GUIDE

Cutline going around the edges of a car

A cutline can be used to merge overlapping orthophotos by
minimizing the color differences between seams. It’s used to
merge orthophotos when processing large datasets using the
split-merge pipeline (see the Processing Large Datasets chapter).

The cutline is saved in odm_orthophoto/cutline.gpkg.

orthophoto-no-tiled

By default the program will generate tiled TIFFs, with a tile
size of 256x256 pixels. Tiling in this context is not the same
as generating tiles for web viewers. Instead its related to the
arrangement of data within the file. Data can be arranged either
in tiles or stripes. When reading and displaying an entire file,
tiles and stripes are equivalent in performance, since all data
must be read regardless. When accessing a subsection of the
image however, for example when zooming into an area, using
tiles often results in needing to read less data.

102

TASK OPTIONS IN DEPTH

Tiles (left) vs. stripes (right). The red rectangle is the area being
accessed. The highlighted area shows the amount of data that needs

to be read from the file. The smaller the highlighted area, the
quicker it is to access the file

Tiles are the default. Tiled orthophotos take slightly longer to
create compared to striped. To use stripes, users can turn on
this option.

orthophoto-resolution

Same as dem-resolution, but applied to orthophotos instead
of DEMs.

pc-classify

Points in a point cloud can be assigned one of several classifica-
tion values27 to indicate whether a point is part of the terrain
(ground), of a building, of a tree (vegetation) and several other
possible classifications. By default every point is simply labeled

27 LAS 1.4 Specification: https://www.asprs.org/wp-
content/uploads/2010/12/LAS_1_4_r13.pdf

103

OPENDRONEMAP: THE MISSING GUIDE

as unclassified and the software does not attempt to label what
each point represents. By turning on this option, a Simple
Morphological Filter28 (SMRF) is used to attempt to find the
points that are part of the terrain (ground) and assign to them a
ground classification value. The end result is a point cloud that
is divided between ground and non-ground points. The ground
point cloud can then be used for the purpose of computing a
DTM.

28 smrf: A Simple Morphological Filter for Ground Identification of LIDAR
Data. http://tpingel.org/code/smrf/smrf.html

104

TASK OPTIONS IN DEPTH

Point cloud (top) and classification results with SMRF (bottom)

The SMRF algorithm can be controlled via four options. It’s
usually recommended to try the default values, examine results
and then make tweaks as needed.

• smrf-scalar: is used to make the threshold parameter
dependent on the slope. To improve results, this value
can be decreased slightly if the smrf-threshold value is
increased and vice-versa.

105

OPENDRONEMAP: THE MISSING GUIDE

• smrf-slope: should be set to the largest common terrain
slope, expressed as a ratio between change in elevation and
change in horizontal distance (if elevation changes by 1.5
meters over a 10 meter distance, that’s 1.5 / 10 = 0.15). It
should be increased for terrains with large slope variation
(hills, mountains) and decreased for flat areas. For best
results it should be higher than 0.1, but not higher than 1.2.

• smrf-threshold: specifies the minimum height (in meters)
of non-ground objects. For example, setting a value of 5
will likely be sufficient to identify buildings, but will not be
sufficient to identify cars. To identify cars the value should
be lowered to 2 or even 1.5 (the average car height). This
parameter alone has the biggest impact on results.

• smrf-window: should be set to the size of the largest non-
ground feature (in meters). For example, if a scene is full
of small objects (trees), this value can be decreased. If the
scene contains large objects (buildings), this value can be
increased. It’s recommended to keep this value above 10.

SMRF has limitations and it’s important to understand them. In
particular, the filter will sometimes mistakenly classify points
that belong to buildings or trees as ground points (type II
errors).

106

TASK OPTIONS IN DEPTH

Input surface model

107

OPENDRONEMAP: THE MISSING GUIDE

Terrain model obtained with default SMRF options. Note some
houses were mistakenly included and artifacts are lingering around

the edges of removed objects

108

TASK OPTIONS IN DEPTH

A much improved terrain model obtained by setting smrf-threshold
0.3 (decreased), smrf-scalar 1.3 (increased), smrf-slope 0.05

(decreased) and smrf-window 24 (increased)

Automated methods for reliable classification of point clouds
are an active area of research. SMRF performs remarkably well,
but often requires some tweaking. Users wishing to generate
high quality DTMs should always double check the results and
adjust the SMRF options as needed. It’s also sometimes worth
comparing the classification results with those obtained from
supervised or trained classification methods. CloudCompare29

is a free and open source software that implements such
methods30.

29 CloudCompare: http://www.cloudcompare.org
30 CloudCompare CANUPO Plugin: http://www.cloudcompare.org/doc/wik-

i/index.php?title=CANUPO_(plugin)

109

OPENDRONEMAP: THE MISSING GUIDE

pc-csv

By default the output point cloud is exported in a compressed
LAZ format. The LAZ format is not human readable and cannot
be opened with a simple text editor. Users can export a copy
of the point cloud to CSV (Comma Separated Value) format
by turning on this option. The CSV file format is not ideal for
point cloud data, but can sometimes be useful for debugging
the values of the point cloud or for import in programs that do
not understand LAS/LAZ. The resulting point cloud is stored
in odm_georereferencing/odm_georeferenced_model.csv.

pc-ept

By setting this option users can export the point cloud in
Entwine Point Tile (EPT) format31, which can be used to
efficiently stream point clouds across networks. EPT datasets
can also be efficiently analyzed, queried and transformed using
tools such as PDAL32. The resulting EPT dataset is stored in
the entwine_pointcloud directory.

pc-filter

Noise from the point cloud can be partially removed using
a statistical filter. This option sets the standard deviation
threshold value for the filter. Standard deviation is a measure of
how spread out points are relative to their neighbors. The filter
looks at the closest 16 neighbors for each point and computes

31 Entwine Point Tile: https://entwine.io/entwine-point-tile.html
32 PDAL: https://pdal.io

110

TASK OPTIONS IN DEPTH

their standard deviations (how far each point deviates from the
average distance to each other point). If a point is found to be
too far away relative to its neighbors, thus having a standard
deviation higher than the threshold, the point is labeled as an
outlier.

The gray point has a high standard deviation, so it’s labeled as an
outlier

Setting this value too high will keep some noisy points, while
setting this value too low will possibly remove valid points.
Filtering can be disabled by setting this option to zero.

pc-las

By default the output point cloud is exported in a compressed
LAZ format. Since not all programs support LAZ, users can
export a copy of the point cloud in uncompressed LAS format
by turning on this option. The resulting point cloud is stored
in odm_georereferencing/odm_georeferenced_model.las.

111

OPENDRONEMAP: THE MISSING GUIDE

rerun

Shorthand for rerun-from <step> end-with <step>.

rerun-all

Shorthand for rerun-from dataset, while also removing all
output folders before starting the process.

rerun-from

Same as end-with, except that it instructs the program to
resume execution from a specific point in the pipeline, skipping
previous steps.

When using WebODM the rerun-from option is automati-
cally set when using the Restart button dropdown.

Restart drop-down in WebODM

It’s not always possible to restart a task from a certain step in
WebODM. The processing node has to support task restarts

112

TASK OPTIONS IN DEPTH

and the task intermediate results need to have been kept on disk
(by default they are kept only for 2 days). See The NodeODM
API chapter for information on how to change the number of
days results are kept.

resize-to

During the SFM process the program needs to extract features
from each image. To speed things up, the program resizes all
images prior to performing feature extraction . This option
specifies the target size of the largest side of the images for
the purposes of feature extraction. It’s important to note that
the input images are not affected by this option and neither
are other stages of the pipeline. Changing this option will not
degrade the quality of resulting orthophotos or 3D models.
This option can be lowered with datasets that have lots of
recognizable features (cars, buildings, etc.) and should be
increased with datasets that lack them (forest areas, deserts,
etc.).

skip-3dmodel

Sometimes all that a user wants is an orthophoto. In that case,
it’s not necessary to generate a full 3D model. This option
saves some time by skipping the commands that produce a 3D
model. A 2.5D model (a 3D model where elevation is simply
extruded from the ground plane) is still generated. 2.5D models
are not true 3D models as they cannot represent the true shape
of objects such as overhangs, but work well for the purpose of
rendering orthophotos.

113

OPENDRONEMAP: THE MISSING GUIDE

3D model (top) vs. 2.5D model (bottom). Note the absence of
overhangs on the bottom

By default both models are created. See also use-3dmesh.

114

TASK OPTIONS IN DEPTH

sm-cluster

Specifies a URL to a ClusterODM instance. When combined
with the split option, it enables the distributed split-merge
pipeline for processing large datasets in parallel using multiple
processing nodes. We cover this option in more detail in the
Processing Large Datasets chapter.

smrf-scalar

Controls the scalar variable for SMRF. See pc-classify.

smrf-slope

Controls the slope variable for SMRF. See pc-classify.

smrf-threshold

Controls the threshold variable for SMRF. See pc-classify.

smrf-window

Controls the window variable for SMRF. See pc-classify.

split

When set to a number lower than the number of input images,
enables the split-merge pipeline. We cover this option in more
detail in the Processing Large Datasets chapter.

115

OPENDRONEMAP: THE MISSING GUIDE

split-overlap

Specifies the amount of overlap (in meters) that submodels
should have during the split-merge pipeline. We cover this
option in more detail in the Processing Large Datasets chapter.

texturing-data-term

A difficult part of texturing a mesh is answering the question
of how to choose the best image for each part of the mesh,
since due to overlap each part of the mesh has likely been
photographed by multiple images. This process is known as
view selection and is guided by the definition of a data term or a
cost function.

116

TASK OPTIONS IN DEPTH

The view selection process assigns different areas of a mesh with an
image. In the screenshot above each color represents a different

image assigned to an area

Two data terms are available:
1. gmi (default)
2. area

GMI stands for Gradient Magnitude Image. A gradient is a
change in values and is often represented graphically for ease
of understanding. Magnitude is a measure of how much the
gradient changes. If a gradient changes gradually it will have
lower magnitude than if the gradient changes abruptly.

A low magnitude gradient (black to white)

117

OPENDRONEMAP: THE MISSING GUIDE

The purpose of the gradient is to prioritize areas in an image
that are in focus (they will exhibit a higher gradient magnitude).
The gradient image is computed by running a Sobel edge
detector and computing a gradient over the result.

118

TASK OPTIONS IN DEPTH

An image (top) vs. Sobel edge detector mapped to a black-white
gradient (bottom). The water shows small changes in gradient,

whereas the shoreline has a higher gradient magnitude

119

OPENDRONEMAP: THE MISSING GUIDE

The area data term works differently. It simply prioritizes
images that provide the largest area coverage for a particular
section of the mesh.

A triangle in the textured mesh

120

TASK OPTIONS IN DEPTH

The same triangle projected on two images. Because the triangle’s
area in the top image is bigger, the top image is chosen for coloring

the triangle

121

OPENDRONEMAP: THE MISSING GUIDE

Data term gmi (top) vs. area (bottom). On the top, notice the
sharpness of the ditch and the blue car, but the presence of a tree on

the road

The tree was wrongly placed on the top image in this case. Trees
have high gradient magnitudes, whereas roads do not.

122

TASK OPTIONS IN DEPTH

Actual image captured from UAV for comparison

texturing-keep-unseen-faces

The input to the texturing part of the pipeline consists of a
mesh, cameras and images. The input mesh is composed of
triangles. The program at some point checks which triangles
are visible by the cameras. By default if a triangle is not visible
by any camera, it’s discarded from the output.

123

OPENDRONEMAP: THE MISSING GUIDE

Unseen faces are removed from the textured mesh (top) vs. faces are
kept with no color (bottom)

This option instructs the program to keep all triangles, regard-
less of whether they are seen by a camera or not.

124

TASK OPTIONS IN DEPTH

texturing-nadir-weight

During texturing the program needs to choose the best image
for each section of the mesh. In addition to using the data
term (see texturing-data-term), if a 2.5D mesh is used for
generating the orthophoto, the program enables a special mode
called nadir. While in nadir mode, the program behaves
differently with parts of the mesh that are vertical or almost
vertical (think walls of buildings).

1. The visibility test for such vertical parts is disabled (see
texturing-skip-visibility-test for a description of the
visibility test).

2. The quality score obtained either via the gmi or area data
term is replaced with a value proportional to the nadir-ness
of the images (how straight down is an image?), multiplied
by a weight. Images that are captured straight down are
given more priority than images that are captured at an
angle.

This option controls the weight of the nadir factor. The higher
this option, the more nadir images are favored for texturing
vertical areas of the mesh and vice versa.

125

OPENDRONEMAP: THE MISSING GUIDE

Camera A has a better view of the side of the building and Camera
B is occluded. But because visibility testing is skipped and Camera

B is more nadir, in nadir mode camera B is selected.

Nadir mode can substantially the quality of orthophotos,
especially around the corners of buildings.

126

TASK OPTIONS IN DEPTH

texturing-nadir-weight set to 0 (top) and 32 (bottom). Note the
quality improvements near the edges of the building

127

OPENDRONEMAP: THE MISSING GUIDE

This option affects only the 2.5D textured mesh (not the 3D
textured mesh). The default of 16 works well for most datasets.
A higher value can increase the quality of buildings, but can
lose details in other areas of the orthophoto.

texturing-outlier-removal-type

Aerial imagery is not always static. Sometimes moving objects
(cars, bicycles, cats, etc.) are captured between multiple photos.
Because the objects are moving however, they could end up
appearing in multiple parts of the textured mesh during the
texturing process.

Moving object, captured between two pictures

To prevent these artifacts, the program checks for consistency
between two or more images. If inconsistencies are found, they
are labeled as outliers and removed. There are two methods to

128

TASK OPTIONS IN DEPTH

do that:
1. gauss_clamping (default)
2. gauss_damping

Both are based on evaluating each photo in which an outlier
could be visible using a statistical method. Gauss Clamping is
more aggressive. Upon finding a high likelihood of an outlier,
it will reject the photo containing the outlier from use in the
area being textured. Gauss Damping on the other hand will
progressively lower the picking priority of the offending photo,
so it’s a less aggressive approach and can lead to smoother
results.

129

OPENDRONEMAP: THE MISSING GUIDE

Gauss Damping (top) vs. Gauss Clamping (bottom). Note a part of
the cart was missed in the top image

130

TASK OPTIONS IN DEPTH

texturing-skip-global-seam-leveling

During texturing the program needs to merge together images
that have different characteristics, for example different light
intensities.

131

OPENDRONEMAP: THE MISSING GUIDE

Seams in the textured model due to different light intensities (top)
and global seam leveling applied (bottom)

This kind of seam blending is referred to as global because
it’s evaluated on all texture patches. The goal is to minimize
the difference between the patches as to achieve consistent

132

TASK OPTIONS IN DEPTH

luminosity throughout.

texturing-skip-hole-filling

During the texturing process, some parts of the mesh cannot
be assigned a texture. This could happen because not enough
information is available to assign a particular face of the mesh
to one of the input images. To mitigate this, small holes in the
mesh are filled by interpolating the textures of nearby faces.

Small holes (left) are filled via interpolation (right). Interpolation
comes out as a smooth blur, which is not very noticeable for small

areas

This option disables the hole filling feature (not recommended).

texturing-skip-local-seam-leveling

When texturing, the program needs to merge together im-
ages that have different characteristics, for example different
light intensities. Applying global seam leveling (discussed
in texturing-skip-global-seam-leveling) is a necessary but
often insufficient step to remove all visible seams from the
texture patches.

133

OPENDRONEMAP: THE MISSING GUIDE

To overcome this problem, the program applies localized
Poisson editing (a way to blend two images) on all texture
patches. The method is local because it affects only a local
buffer around the boundary of the texture patches to keep run-
time under control. An in-depth discussion of the method is
outside the scope of this chapter, but is clearly explained in
the paper Let There Be Color! Large-Scale Texturing of 3D
Reconstructions33 under the Poisson Editing section.

33 Let There Be Color! Large-Scale Texturing of 3D Reconstructions:
https://www.gcc.tu-darmstadt.de/media/gcc/papers/Waechter-
2014-LTB.pdf

134

TASK OPTIONS IN DEPTH

Result with global seam leveling, but not local seam leveling (top)
and with local seam leveling (bottom)

This option disables local seam leveling (not recommended).

135

OPENDRONEMAP: THE MISSING GUIDE

texturing-skip-visibility-test

During the texturing process, mesh faces are checked for
visibility. If an obstacle exists between a face and a camera
(such as a building), that face will ignore image information
coming from that particular camera. This is a good way to
assure consistency.

A camera ray projected onto a face (red dot). A building is in the
way, so the camera is ignored.

Without visibility testing, images from building rooftops would show
up on the ground!

texturing-tone-mapping

This option can sometimes help enhance the quality of textured
meshes and thus the quality of the orthophotos. When setting
this option to gamma, the program applies gamma correction
to the texture maps, prior to applying local and global seam
leveling. Gamma correction is a method for mapping lumi-
nance values in an image (for which an in-depth discussion
is available at https://www.cambridgeincolour.com/tutorials/
gamma-correction.htm). The use of gamma correction in the

136

https://www.cambridgeincolour.com/tutorials/gamma-correction.htm
https://www.cambridgeincolour.com/tutorials/gamma-correction.htm

TASK OPTIONS IN DEPTH

context of texturing can generate more vivid results.

Raw input image (left), gamma corrected image (right)

time

Generates a benchmark.txt file stored in the project directory
showing the time it took to process each step of the pipeline.
Useful for measuring performance. By default no benchmark
file is generated.

use-3dmesh

By default a 2.5D textured mesh is used to render the or-
thophoto. 2.5D meshes tend to work well for most aerial
datasets, but can sometimes lead to sub-par results, especially
if there are no nadir images in the datasets (images with the
camera pointed straight or almost straight at the ground). The
reason for it is that the texturing step is performed differently
between 3D and 2.5D meshes. 2.5D meshes give priority to
nadir images, and if these are missing, the texturing might be of
lesser quality compared to a 3D mesh. For points of interests,

137

OPENDRONEMAP: THE MISSING GUIDE

such as one obtained by orbiting a single building at close range
with oblique images, a 2.5D mesh will also perform poorly.
This option instructs the program to use the full 3D model for
generating an orthophoto and to skip the generation of the
2.5D model. See also skip-3dmodel.

use-exif

A Ground Control Point file will always be used if either a
gcp_list.txt file exists in the project directory (ODM) or if a GCP
file has been uploaded with a dataset (WebODM). By turning
on this option, the program ignores the GCP file and relies on
the location information from the images’ EXIF tags instead.

use-fixed-camera-params

During the SFM process, the camera’s internal parameters
need to be estimated and refined to achieve a good solution.
Sometimes, due to poor image collection practices or excessive
lens distortion, the camera parameters are wrongly estimated
and can result in reconstructions that exhibit a doming effect.
While better solutions to the doming effect are explained in the
Camera Calibration chapter and through the use of the cameras
option, by turning on this option it’s possible to instruct the
software not to optimize camera parameters at all (keeping
the parameters fixed). This can sometimes improve results
if there’s little to no geometric distortion in the images and
the focal length value embedded in the images’ EXIF tags is
accurate.

138

TASK OPTIONS IN DEPTH

use-hybrid-bundle-adjustment

Bundle adjustment (BA) is a refinement step during the SFM
process that improves the location of cameras, 3D points and
camera parameters. This process needs to be done at regular
intervals during the reconstruction to avoid the accumulation
of errors, but is also computationally expensive. It comes in
two varieties, local and global. Local BA only refines a subset of
the reconstruction, global BA refines the entire reconstruction.
Performing global bundle adjustment requires re-evaluating
the entire scene, which is slow. By default, the program will
perform global BA only after the number of new triangulated
points in the scene has increased by 20%. It will also perform
local BA every time a new camera is added to the scene by
comparing the cameras that are within 3 levels of connectivity
(capped to 30 cameras).

Local Bundle Adjustment with 3 (left) and 1 (right) levels of
connectivity.

Gray cameras (up to 30) are used in the local BA calculation.
Camera icon by FontAwesome CC BY 4.0

By turning on this option, the program changes the logic that
triggers the local and global bundle adjustment. First, a global
bundle adjustment is forced every time 100 new cameras are
added to the scene, regardless of the number of new points

139

OPENDRONEMAP: THE MISSING GUIDE

added to the reconstruction. Second, when performing local
bundle adjustment, the program only looks at the the cameras
that are within 1 level of connectivity instead of 3. In short,
this option increases the number of times that global BA is
performed, but reduces the number of local BA operations.

Estimate of global BA operations

Estimate of local BA operations
140

TASK OPTIONS IN DEPTH

For small datasets (< 1000 images) there’s not much difference.
As the number of images increases, the cost of running more
local BA operations starts to outweigh the cost of running more
global BA. For very large datasets, turning on this option can
reduce the total run-time. It can also increase the accuracy
of the reconstruction since a global bundle adjustment is
performed more frequently.

use-opensfm-dense

The program has two options for generating the dense point
cloud:

1. MVE (default)
2. OpenSfM

By default MVE (Multi-View Environment) is used. By turning
on this option OpenSfM’s depthmap reconstruction algorithm
is used instead.

verbose

This option enables verbose messages. When this option is
enabled, the processing output will contain more messages
which can be used to diagnose possible issues.

version

This option causes the program to print the ODM version
number and exit.

141

8

Ground Control Points

A ground control point (GCP) is a position measurement
made on the ground, typically using a high precision GPS34.
Measurements are made near identifiable structures such as
street corners or by placing visible markers on the terrain.

34 I use GPS as a synonym for GNSS, since most people recognize GPS as a
word.

142

GROUND CONTROL POINTS

A ground control point marker.
Image courtesy of Michele M. Tobias & Alex Mandel Creative

Commons Attribution-ShareAlike 4.0 International CC BY-SA 4.0

Images that contain the visible markers can then be tagged by
creating a correspondence between the image location of the
markers and their real world positions.

143

OPENDRONEMAP: THE MISSING GUIDE

Figure 1: A GCP marker is photographed by camera A to produce
Image A. In a second step, the pixel location of the marker

(1500,1000) from Image A can be manually tagged with its real
world coordinates (latitude 40, longitude -85).

Using ground control points can increase the georeferencing
accuracy of a reconstruction, sincemeasurements of static (non-
moving) objects using a high precision GPS are often better
than those obtained from the GPS of moving UAVs.

The ideal number of ground control points ranges between
5 to 8, placed evenly across the area to be flown. Adding more
than 8 ground control points does not necessarily result in
increased accuracy.

If the same marker is visible from multiple images, it should
be tagged multiple times for each image. Ideally each marker
should be tagged at least 3 times. Another way to think of it is
to capture each marker on at least 3 images. This is so that the
marker’s location can be triangulated during computation.

Ground control points can be used by providing an additional
text file along with the input images. The file follows a simple
format:

• The first line indicates the spatial reference system (SRS) of

144

GROUND CONTROL POINTS

theworld coordinates. There are no restrictions on the type
of SRS you can use. Internally the program will convert
the coordinates to the nearest WGS84 UTM35 projection.
The SRS can be specified using 3 different formats.

1) WGS84 UTM <zone number><hemisphere>

2) EPSG:<code>

3) <proj4>

Format #1 is just a human readable format specifying a UTM
projection using the WGS84 reference ellipsoid and datum.
Format #2 uses EPSG codes36, which are a standard to reference
many common spatial reference systems. Format #3 uses Proj4
strings37 , which are used to explicitly to define spatial reference
systems. Format #1 and #2 are preferred over #3.

These are all valid examples of SRS definitions for a GCP file:

WGS84 UTM 16N

WGS84 UTM 32S

EPSG:4326

EPSG:32616

+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs

+proj=utm +zone=16 +ellps=WGS84 +datum=WGS84 +units=m

+no_defs

35 Universal Transverse Mercator: https://en.wikipedia.org/wiki/Univer-
sal_Transverse_Mercator_coordinate_system

36 EPSG: http://www.epsg.org/
37 Proj Quick Start: https://proj.org/usage/quickstart.html

145

OPENDRONEMAP: THE MISSING GUIDE

A great resource to lookup spatial reference systems and their
definitions is https://www.spatialreference.org.

• Subsequent lines are the world X, Y, Z coordinates, the
associated pixel coordinates and the image filename (case
sensitive). Optionally, extra fields (such as labels) can
be specified after that. Tabs and spaces can be used
interchangeably to separate fields.

<spatial reference system>

<geo_x> <geo_y> <geo_z> <im_x> <im_y> <image_name> [<

extras>]

<geo_x> <geo_y> <geo_z> <im_x> <im_y> <image_name> [<

extras>]

...

The GCP in Figure 1, for example, would be represented as:

EPSG:4326

-85 40 0 1500 1000 ImageA.jpg gcp1

The geo_z field in this case is set to zero because Figure 1
doesn’t have an altitude value.

Creating a GCP file using POSM GCPi

The task of manually finding and measuring pixel coordinates
from all images and tyingmarker locations toworld coordinates
can be tedious and error prone at best.

The Portable OpenStreetMap Ground Control Point Inter-

146

https://www.spatialreference.org

GROUND CONTROL POINTS

face (POSM GCPi) provides a way to make this process a bit
easier. The application is already loaded as a default plugin in
WebODM and can be accessed via the GCP Interface panel.

Alternatively it can also be downloaded and run as a stan-
dalone application by following the instructions on the project’s
home page38. It’s also hosted online at https://webodm.net/
gcpi.

Step 1. Create a GCP file stub

After measuring the location of your markers it’s likely that
you’ll end up having a list of labeled point coordinates. Export-
ing them to CSV format and opening them in a spreadsheet
application such as LibreOffice Calc39 should yield something
similar to:

X,Y,Z,Label

-91.9943320967465,46.8423713026218,0,gcp1

-91.9938849653384,46.8423668860772,0,gcp2

-91.9942463047423,46.8425277454029,0,gcp3

From here, let’s add two new columns for the px, py fields
(initialized to zero) and shift the Label column to the right, so
that our file now looks like:

X,Y,Z,px,py,Label

-91.9943320967465,46.8423713026218,0,0,0,gcp1

-91.9938849653384,46.8423668860772,0,0,0,gcp2

-91.9942463047423,46.8425277454029,0,0,0,gcp3

38 POSM GCPi: https://github.com/posm/posm-gcpi
39 LibreOffice: https://www.libreoffice.org

147

https://webodm.net/gcpi
https://webodm.net/gcpi

OPENDRONEMAP: THE MISSING GUIDE

Finally, we remove the first line, replacing it with a SRS
definition and save the CSV file making sure to use tabs or spaces
instead of commas as a separator character. In LibreOffice Calc
you can achieve this by clicking File - Save As... and from
the bottom left of the save window check Edit Filter Settings.
The final result opened in a text editor should look like:

EPSG:4326

-91.9943320967465 46.8423713026218 0 0 0 gcp1

-91.9938849653384 46.8423668860772 0 0 0 gcp2

-91.9942463047423 46.8425277454029 0 0 0 gcp3

Step 2: Import the GCP file stub

From POSM GCPi, press the Load existing Control Point
File button and select the file you just created in step 1. After
pressing Load the map on the right should update to reflect the
position of your points.

148

GROUND CONTROL POINTS

Loading a GCP stub into POSM GCPi

Step 3. Import the images and start tagging

Now import the images by pressing Choose images. Clicking
an image will expand the panel on the left. Due to a usability
quirk, the interface will add a new ground control point, which
we need to remove. You can click the point on the right panel
and delete it. Now from the left panel you can pan and zoom
around the image to move the target icon at the location of your
marker. Once it’s in the proper position, simply click the target
icon once from the left panel and click the corresponding target
icon from the right panel. The target icon should turn green,
indicating a correspondence has been set.

149

OPENDRONEMAP: THE MISSING GUIDE

Tagging images with points using POSM GCPi

Now you can repeat the process for every marker and every
image. If you get tired or want to save your work, simply press
Export File and save the result in a location of your choice.
You can resume your work by reloading the images and the
exported file.

Notice the green dot on the top left corner. The dot shows
the number of points that have been connected to at least one
image (in this case, one). At the end of the process you’ll want
to have at least 5 or 8 green dots.

Step 4. Export the GCP file

Once you are done, you can press the Export File button to
export your finished GCP file. This is the file that you will be
using for the next steps.

150

GROUND CONTROL POINTS

Using GCP files

With WebODM and NodeODM using a GCP file is as simple
as including it along with the images during file upload. With
ODM, the GCP file should be placed in your project folder
and be named gcp_list.txt. Alternatively, you can use the gcp
option to specify a path to a GCP file. For example, if images
are stored in D:\odmbook\project\images and your GCP
file is stored in D:\odmbook\project\gcp.txt, you can simply
invoke from the command line:

$ docker run -ti --rm -v //d/odmbook/project:/datasets

/code opendronemap/odm --project-path /datasets --

gcp /datasets/code/gcp.txt

Using ODM from the command line is covered in detail in The
Command Line chapter.

How GCP files work

Sometimes the final results might not align perfectly with your
ground control points. It’s important to understand why. GCP
obversations are used during the SFM step of the processing
pipeline. During that step, camera positions are estimated
based on an error minimization problem with many variables
involved. GCP observations are used to to minimize the
georeferencing alignment error, but they can’t compensate for
other factors such as an incorrect camera model estimate due
to a sub-optimal flight path or excessive camera lens distortion
(see the Camera Calibration chapter). If your results do not align
perfectly, first check for mistakes in your GCP file. If there are

151

OPENDRONEMAP: THE MISSING GUIDE

none, read and apply the concepts from the Camera Calibration
chapter to improve results.

152

9

Flying Tips

Data collection is sometimes more art than science. There are
however many useful guidelines you can follow to increase the
quality and accuracy of your results. Follow these recommen-
dations and you will achieve better results.

Fly Higher

This is probably the most useful tip. Once you know the target
resolution you’re aiming for, don’t fly lower than you absolutely
need. If you need an orthophoto at 5 cm / pixel resolution,
don’t fly at an elevation that gives you you a 1 cm / pixel
resolution. Most flight planner apps will tell you what altitude
you need to fly to achieve a target resolution. This is not only for
saving space and processing time: the results will look better
also! When you fly at a higher elevation more features can
be matched across images during the structure from motion
process (especially for areas with lots of trees or farmlands).
Building rooftops will also look better due to the way texturing
works. Finally, you can achieve greater image overlap and cover

153

OPENDRONEMAP: THE MISSING GUIDE

a larger area in a single flight.

Fly on Overcast Days

When possible, try to plan your flights when clouds are covering
the sky. Clouds diffuse the rays from the sun, creating a soft
light that reduces blur, shadows and produces more pleasing
colors, increasing the overall quality of orthophotos and 3D
models.

Fly Between 10am and 2pm

When the sun is directly above you, there will be less shadows
and more uniform lighting.

Fly at Different Elevations and Capture Multiple
Angles

OpenDroneMap can produce more accurate results when
you capture images from different elevations, using both
nadir (straight down) and non-nadir (at an angle) images. A
cross pattern flown at two different altitudes with varying
angles is much better than a single nadir-only pattern. When
capturing angled images, be careful to set a value that avoids the
horizon! Capturing the horizon can deteriorate results instead
of improving them.

154

FLYING TIPS

Flying cross-pattern at different elevations with B capturing nadir
images and A capturing images at a slight angle (or vice-versa) is a

better for camera calibration

We discuss this in more details in the Camera Calibration
chapter.

Fly on Calm Days

When it’s windy your drone will have a harder time stabilizing
the camera and can produce images that are blurrier. Fly when
it’s calm for better results.

155

OPENDRONEMAP: THE MISSING GUIDE

Increase Overlap

More overlap increases the number of features that can be
matched across images. Side overlap is more important than
front overlap, so increase side overlap first, then increase front
overlap.

Flight path with 4 images (left), front overlap (middle) and side
overlap (right). Darker areas indicate the overlap area between

images. More overlap is better

Set Drone to Hover While Taking Images

If your drone camera is equipped with a rolling shutter (most
consumer grade drones), you should instruct the flight con-
troller to bring the drone to a hover before taking a picture, as
OpenDroneMap currently does not implement a rolling shutter
correction model40. Doing this will increase the accuracy of
the reconstruction41. This is not something to worry about if

40 Rolling shutter correction: https://github.com/OpenDroneMap/ODM/is-
sues/313

41 Improved accuracy for rolling shutter cameras:
https://www.pix4d.com/blog/rolling-shutter-correction

156

FLYING TIPS

your drone camera is equipped with a global shutter.

Check Camera Settings

Make sure that image quality is set to high and auto focus is
disabled. To do that, fly at your target altitude before mission
start, set the focus, then disable auto focus.

This chapter concludes part II of the book. Most of what you
need to know to start using OpenDroneMap efficiently has
been covered. Congratulations for making it this far!

Part III delves into some more advanced topics, such as
using OpenDroneMap from the command line, the mysteries
of docker, processing humongous datasets at scale and an
introduction to using Python for automating processing using
the NodeODM API.

157

III

Advanced Usages

“Any sufficiently advanced technology is
indistinguishable from magic.”

- Arthur C. Clarke

10

The Command Line

In the first part of this book we explored how to use WebODM,
the friendly graphical interface to ODM. WebODM hides some
of the complexities of ODM, but this convenience comes at a
cost. Here are a few things you cannot easily do in WebODM:

• Process tasks without performing web uploads.
• Inspect intermediate result files.
• Restart a task from an arbitrary point in the pipeline

(WebODM supports task restarts, but only for a subset
of them).

• Restart tasks without time expirations (WebODM can
restart tasks only within 2 days of the task completing,
unless the NodeODM settings are changed).

In this chapter we’re going to leave the comforts of the user
interface and dive into the realm of power users, using the
command line to process the tasks directly with ODM.

This is not meant to be an exhaustive guide on using the
command line for different operating systems. It’s an overview
of the basic commands you’ll likely need to know for the

161

OPENDRONEMAP: THE MISSING GUIDE

purpose of using ODM.
If you are already familiar with the command line, feel free

to skip this chapter.

Command Line Basics

First, we should clarify that a command line is any application
that allows a user to interact with it by means of typing com-
mands. There are many varieties of command line applications
and each operating system tends to have its own flavor(s).
To provide a unified set of instructions for all three major
operating systems (Windows, macOS, Linux), when we say
command line we will always refer to Bash or one of its variants:

• Windows: use Git Bash (installed by following the instruc-
tions in the Installing The Software chapter). Do not use the
Command Prompt or Powershell.

• macOS: use the Terminal app.
• Linux: Most distributions already use Bash by default, but

in case your shell is different, just launch a bash shell by
typing bash in your terminal.

Below are some commands you should be familiar with. Once
you have opened a command line, try to type them:

• ls -al: list files and directories
• cd <dir>: change directory
• pwd: show me the current directory
• cat <file>: show the contents of file
• head -n <lines> <file>: show the first lines of file
• tail -n <lines> <file>: show the last lines of file
• find . -name *.JPG: find all JPG files in the current

directory (and subdirectories)

162

THE COMMAND LINE

• whoami: show the name of the current user
• chown -R $(whoami):$(whoami) <directory>: change

ownership of directory to the current user and group
• sudo <command>: execute command with admin privi-

leges (Linux and Mac only)

Adding the –help flag to any of the commands above will show
a description of the command along with usage information.

$ ls --help

Usage: ls [OPTION]... [FILE]...

List information about the FILEs (the current

directory by default).

Sort entries alphabetically if none of -cftuvSUX nor

--sort is specified.

...

Paths in Bash are separated by forward slashes (as in
/c/Users/myuser). This is sometimes a source of confusion
for Windows users who are used to back slashes (as in
C:\Users\myuser). Paths and filenames are also case-sensitive,
so /c/file is different than /c/FiLe.

Pressing the TAB key while typing commands can autocom-
plete paths, for example if there’s a directory in /c/myVery-
LongPathname and we’re currently in /c:

$ pwd

/c

$ cd myV<PRESS TAB>

$ cd myVeryLongPathname/ <-- auto completed

163

OPENDRONEMAP: THE MISSING GUIDE

To navigate up one level from a directory you can reference the
special “. .” (two dots) directory:

$ pwd

/c/dir

$ cd ..

$ pwd

/c

Note there’s a space between cd and the two dots.

Using ODM

Now thatwe knowhow to navigate around directories using the
cd command, place some images in a directory of your choice
(e.g. C:\odmbook\projects\test\images) and navigate to:

$ cd /c/odmbook/

On Windows, if while running any of the commands below
you get a the input device is not a TTY. If you are using mintty, try
prefixing the command with ‘winpty’ error message you will need
to type the following:

echo "alias docker='winpty docker'" >> ~/.bash_profile

then restart Git Bash before proceeding.
We can start processing the images with ODM by typing:

164

THE COMMAND LINE

$ docker run -ti --rm -v /$(pwd)/projects/test:/

datasets/code opendronemap/odm --project-path /

datasets [options]

In place of [options] you can add any of the task options we’ve
covered in the Task Options in Depth chapter. For example, to
change the orthophoto resolution, generate a DSM and restart
a task from the Multi-View Stereo step, we can type:

$ docker run -ti --rm -v /$(pwd)/projects/test:/

datasets/code opendronemap/odm --project-path /

datasets --orthophoto-resolution 2 --dsm --rerun-

from mve

If you forget what options are available, you can simply run:

$ docker run -ti --rm opendronemap/odm --help

If the docker commands above looks ominous, don’t worry. The
next chapter contains a more in-depth discussion of docker.

Processed Files Owned By Root

On Linux and Mac you might notice that once your images
are done processing the resulting files cannot be changed or
deleted! This is a peculiarity of docker in which the output files
are created within the docker container, and since the container
runs with a root (admin) user, all files are also owned by root.
To get back control to the files, simply run:

165

OPENDRONEMAP: THE MISSING GUIDE

$ sudo chown -R $(whoami):$(whoami) /path/to/project

You can check who owns a directory by typing:

$ ls -al

drwxrwxrwx 2 foo bar 4.0K Jun 10 18:02 images

In the output above the images directory is owned by the user
foo and group bar.

Add New Processing Nodes to WebODM

If you have a second computer, you can launch a new
NodeODM node on that computer by typing:

docker run --rm -it -p 3000:3000 opendronemap/nodeodm

-q 1 --token secret

The command asks docker to launch a new container using
the opendronemap/nodeodm image (the latest version of
NodeODM), using port 3000, setting a maximum number of
concurrent tasks to 1 and protecting the node from unautho-
rized access using the password secret.

From WebODM you can then press the Add New button
under the Processing Nodes menu. For the hostname/IP field
type the IP of the computer. For the port field type 3000. For
the token field type secret. You can also add an optional label for

166

THE COMMAND LINE

your node. Then press Save.
You should now be able to process multiple tasks in parallel

using multiple machines.

Batch Geotagging of Images Using Exiftool

You can use exiftool42 to add geolocation information to many
images at once. The first step is to use a software such as
LibreOffice Calc43 to create a spreadsheet with the following
columns.

SourceFile | GPSLatitude | GPSLongitude | GPSAltitude

| GPSLatitudeRef | GPSLongitudeRef |

GPSAltitudeRef

Then for each image you want to tag, add new rows as follows:

image1.JPG | 46.8425212 | -91.9942096 | 198.609 | N |

W | 0

image2.JPG | 46.8424584 | -91.9938293 | 198.609 | N |

W | 0

[...]

When you are done, export the spreadsheet to CSV format.
Finally, type:

$ exiftool -GPSLatitude -GPSLongitude -GPSAltitude -

GPSLatitudeRef -GPSLongitudeRef -GPSAltitudeRef -

42 Exiftool: https://www.sno.phy.queensu.ca/~phil/exiftool/
43 LibreOffice: https://www.libreoffice.org/

167

OPENDRONEMAP: THE MISSING GUIDE

csv="myfile.csv" -o geotagged_images/ input_images

/

Images in the input_images directory will be geotagged and
saved in the geotagged_images directory.

Further Readings

While not required for the purpose of using OpenDroneMap,
users interested in expanding their skills with the command line
should read the Learn the Bash Command Line tutorial available
at https://ryanstutorials.net/linuxtutorial/. It contains a much
more comprehensive introduction, including file manipulation,
editing, pipes and process management.

168

https://ryanstutorials.net/linuxtutorial

11

Docker Essentials

Most OpenDroneMap projects make extensive use of Docker
as an installation and management tool. If you have ever had
to deal with it, you probably know that it’s confusing, seems to
eat your disk space without reason and will unexpectedly error
out with some cryptic message once in a while.

For the good and the bad however, Docker is here to stay.
This chapter is here to help you understand its concepts and
covers some basic commands as they are applicable to using
OpenDroneMap more efficiently. I encourage readers to follow
along and type the commands in a terminal while going through
this chapter.

Docker Basics

Without getting too technical, docker is a tool that lets people
wrap software and all their dependencies into docker images.
Think of these images as programs. Each image can be used to
start one or more containers. Think of containers as running
instances of the program. To make an analogy, if Notepad is

169

OPENDRONEMAP: THE MISSING GUIDE

a docker image, opening the Notepad program 3 times is the
equivalent of running 3 containers.

Unlike normal programs however, docker images carry with
them the entire operating system from which they are built!
Among many other advantages, this allows us to run a program
that was built for Linux under a different operating system. Of
course there are disadvantages too (extra space, some overhead,
etc.), but life is about trade-offs isn’t it?

Docker images have names and they follow this convention:

username/imagename[:tag]

The :tag part of the name is optional and when omitted it
defaults to latest. As an example, let’s look at the full command
we typically use to start an ODM process in Windows:

$ docker run -ti --rm -v //d/odmbook/project:/datasets

/code opendronemap/odm --project-path /datasets

170

DOCKER ESSENTIALS

We are asking docker to start a new container using the
opendronemap/odm:latest image.

• -ti (short for -t -i) asks docker to create a terminal and to
keep it open (even if we close the window). Just remember
to pass this, or no console output will be displayed.

• –rm asks to remove the container once it’s done (by default
containers are not destroyed after they are done, they are
left in a stopped state).

• -v maps a volume (we’ll discuss volumes below). Finally, we
pass the –project-path option to the ODM process inside
the container.

The docker run command follows this syntax:

docker run [docker options] [image name] [program

options]

Managing Containers

We mentioned earlier that by default containers are not re-
moved. A container begins in a running state and when it’s
done it switches to a stopped state. Let’s see what happens
when we forget to pass the –rm flag to a run command.

$ docker run -ti -v //d/odmbook/project:/datasets/code

opendronemap/odm --project-path /datasets

171

OPENDRONEMAP: THE MISSING GUIDE

When the command stops, we list all containers by issuing:

$ docker ps -a

CONTAINER ID IMAGE

COMMAND CREATED

STATUS PORTS

NAMES

ab89e4b71b65 opendronemap/odm

"python /code/run.py..." 9 minutes ago

Exited (1) 9 minutes

We can see that the opendronemap/odm container was not
removed after exiting (because we didn’t specify –rm). The ps
-a command shows all containers, whether they are running or
are stopped.

Each container has a unique identifier (or hash), which can be
used to reference the container in other commands. In these
examples, the container’s hash is ab89e4b71b65.

To remove the container we just launched we can type:

$ docker rm ab89e4b71b65

If there are no conflicting hashes, you can also shorthand
the hash by typing just one or more of the hash’s beginning
characters:

$ docker rm ab8

172

DOCKER ESSENTIALS

If you get the error message Error response from daemon: You
cannot remove a running container, it’s because only containers
that are in stopped state can be removed. To stop a container
issue:

$ docker stop ab8

We can verify that the container has been removed by issuing:

$ docker ps -a

CONTAINER ID IMAGE

COMMAND CREATED

STATUS PORTS

NAMES

You should be comfortable creating, listing and removing
containers.

Two other important flags for the run command are -d and
-p:

$ docker run -d -p 3000:3000 opendronemap/nodeodm

ab89e4b71b65

The -d flag can be used to start a container in the background.
When a container is launched in the background the console
does not attach to the container but returns immediately with
the hash of the created container. This way you can launch

173

OPENDRONEMAP: THE MISSING GUIDE

multiple containers without having to open new terminal
windows. The -p flag exposes a network port from the
container so that you can access it from the outside:

-p <port of computer>:<port inside container>

In the example above, the opendronemap/nodeodm image
contains a web server that is configured to run on port 3000.
By passing -p 3000:3000 we ask docker to make the web server
(running on port 3000 inside the container) available on port
3000 on our computer. This might seem confusing, but allows
you to do cool things such as:

$ docker run -d -p 3000:3000 opendronemap/nodeodm

$ docker run -d -p 3001:3000 opendronemap/nodeodm

Which launches two separate NodeODM instances on ports
3000 and 3001, respectively.

Managing Images

Docker images can be created from a Dockerfile44, which is a
text file that tells docker how to create a particular image.

You don’t necessarily need to build your own images.
The OpenDroneMap developers have already built and
published docker images for everyone to use. You can see
what images are available by visiting https://hub.docker.com/

44 Dockerfile Reference: https://docs.docker.com/engine/reference/builder/

174

https://hub.docker.com/r/opendronemap
https://hub.docker.com/r/opendronemap
https://hub.docker.com/r/opendronemap

DOCKER ESSENTIALS

r/opendronemap/.
There are some advantages to building your own images.

You can make modifications to the software and in some cases
(mostly just for ODM), you can gain a modest speed-up! For
example, the public opendronemap/odm image has been built
to support a large variety of computers (old and new), so certain
optimizations that are available only on newer computers have
been disabled. If you have a shiny new computer, building your
own image can take advantage of those optimizations. To build
your own image of ODM, first download ODM’s source code,
then navigate to the folder that contains the Dockerfile and
type:

$ docker build -t myusername/odm .

After building it (which will take a while), use myuser-
name/odm to run your image:

$ docker run --rm -ti [...] myusername/odm [...]

The first time you use docker run, Docker checks if the image
you are requesting already exists on the computer. If it does,
docker runs it. If it doesn’t, docker attempts to download it
from hub.docker.com. You can list the images that exist on your
computer by using:

$ docker images

REPOSITORY TAG IMAGE

175

https://hub.docker.com/r/opendronemap
https://hub.docker.com/r/opendronemap
https://hub.docker.com

OPENDRONEMAP: THE MISSING GUIDE

ID CREATED SIZE

opendronemap/odm latest

f2275dac6ee1 22 hours ago 3.14GB

Notice that every image has a unique identifier (or hash)
associated with it. With time you might decide that you do
not need some images anymore and you can reclaim some disk
space by removing older images. For example, let’s remove the
opendronemap/odm image:

$ docker rmi f22

When a new image becomes available on hub.docker.com (for
example, when a new version of ODM becomes available) you
need to manually specify that you’d like to download the new
version using the pull command:

$ docker pull opendronemap/odm

Managing Volumes

Up to this point, we’ve been using this run command quite a
bit:

docker run -ti -v //d/odmbook/project:/datasets/code

opendronemap/odm --project-path /datasets

176

https://hub.docker.com

DOCKER ESSENTIALS

But what does the -v //d/odmbook/project:/datasets/code
part do? It creates a mapped volume:

-v <path on computer>:<path in container>

Containers are isolated environments. A container has its
own internal directory structure, separate from that of the
computer that is running the container. If we want to allow the
container to access some of the files on our computer, we need
to specifically allow it and we need to specify where we want
to make our files accessible inside the container.

Docker volume mapping. Files in D:\odmbook\project will be
available in the container’s /datasets/code path

If you have ever setup a network drive, you map a network
location to a drive so that you can access some path such as
G:\folder, even though folder might be a folder residing on a
remote computer. Docker volumes are just like network drives,
but from your computer to containers.

If this still doesn’t make sense, just accept as an universal fact
that in order to get files in and out of a container you need to
setup a mapped volume.

In our example we took the D:\odmbook\project folder

177

OPENDRONEMAP: THE MISSING GUIDE

from our computer and made it available in the container’s
/datasets/code directory:

Computer --> Container

D:\odmbook\project\images\1.JPG --> /datasets/code/

images/1.JPG

D:\odmbook\project\images\2.JPG --> /datasets/code/

images/2.JPG

...

A quick note on the choice of /datasets/code as a path for
the ODM container. /datasets is an arbitrary path, which we
specify via –project-path /datasets when running ODM:

docker run -ti -v //d/odmbook/project:/datasets/code

opendronemap/odm --project-path /datasets

code is the default project name. We can also explicitly specify a
different project name and rewrite the command above as:

docker run -ti -v //d/odmbook/project:/datasets/

example1 opendronemap/odm --project-path /datasets

example1

But because the developers are lazy (the good kind of lazy) if
a project name is omitted it defaults to code, so it’s shorter to
write.

A word of caution for Windows users: mapping volumes with

178

DOCKER ESSENTIALS

Docker Toolbox (Windows 7/8 and Windows 10 Home users)
requires the path you want to map to be shared, or if you don’t
want to deal with extra configurations, make sure you only
attempt to map folders that are within your user’s home folder
(C:\Users\youruser\)45.

Some readers might have noticed that I prefixed the volume
paths with two forward slashes instead of one. This is a quirk
of Git Bash on Windows. You can omit the two forward slashes
on macOS and Linux.

Docker-Compose Basics

While docker is used for running individual containers, docker-
compose is used for running multiple containers. It’s helpful
to look at WebODM as an example of an application that uses
docker-compose. WebODM, for example, is made of several
components:

• A web application (opendronemap/webodm_webapp)
• A database (opendronemap/webodm_db)
• A message broker (library/redis)
• A processing engine (opendronemap/nodeodm or

dronemapper/node-micmac)

You can see the parts that make WebODM by looking at the
contents of the various docker-compose*.yml files from the
WebODM source code. These .yml (YAML) files control the

45 How to use a directory outside C:\Users with Docker Toolbox/Docker for
Windows

: http://support.divio.com/local-development/docker/how-to-use-a-
directory-outside-cusers-with-docker-toolboxdocker-for-windows

179

OPENDRONEMAP: THE MISSING GUIDE

behavior of docker-compose. In Part II of this book when we
launched WebODM via:

./webodm.sh start

all we did was to start docker-compose. In fact webodm.sh is
mostly an interface to docker-compose. It provides a way to
coordinate the launch of multiple containers, decide which
containers should be launched before others, how storage
should be configured and many other features. It’s outside
the scope of this book to have an exhaustive overview of
docker-compose, but interested readers can find an exhaustive
guide from the docker documentation46. I invite you to open
webodm.sh as well as the various docker-compose*.yml files with
a text editor to see how they are defined.

Docker-compose can combine multiple .yml files together.
For example:

$ docker-compose -f docker-compose.yml -f docker-

compose.nodeodm.yml up

reads the configuration from docker-compose.yml, then ap-
plies the configuration from docker-compose.nodeodm.yml,
overriding or extending previous configurations. In this
case docker-compose.nodeodm.yml (start WebODM using
a NodeODM processing node) extends docker-compose.yml
(just start WebODM, no processing nodes). The up command

46 Docker-compose: https://docs.docker.com/compose/

180

DOCKER ESSENTIALS

asks to create and start all the containers defined in the
configurations. Other useful commands include:

Stop the containers (but don't remove them)

$ docker-compose -f docker-compose.yml stop

Stop the containers and remove them

$ docker-compose -f docker-compose.yml down

Update all images from hub.docker.com

$ docker-compose -f docker-compose.yml pull

Managing Disk Space

Without the occasional cleaning, over time docker will happily
eat up all of your disk space! This can happen when contain-
ers have not been removed, when many images have been
downloaded, or when stray volumes have been abandoned.
Docker is supposedly doing you a favor by not removing things
automatically (what if you needed that image you built 3 years
ago?). Luckily there’s a useful command for cleaning things up:

$ docker system prune

181

OPENDRONEMAP: THE MISSING GUIDE

Changing Entrypoint

Starting and stopping containers can take time. Also when
processing fails, it might be difficult to inspect what went
wrong. The author suggests a two step approach to running
ODM datasets with docker:

$ docker run -ti -v //d/odmbook/project:/datasets/

example1 --entrypoint bash opendronemap/odm

root@898747d1f3a8:/code# ./run.py --project-path /

datasets example1

root@898747d1f3a8:/code# exit

$

By passing the –entrypoint bash flag we ask docker to ignore
the default startup command of the container (run.py) and to
run bash (a Linux shell) instead. The # confirms that we are
inside the container, running a bash shell. Now we can run the
ODM process by invoking run.py directly. The difference with
this approach is that if something fails, we canmore easily check
for problems and restart the process. To exit the container we
simply type exit.

Assigning Names To Containers

When you have lots of containers, nothing is more frustrating
than remembering hash IDs. You can assign names when
running a container and then reference that name in future
commands.

182

DOCKER ESSENTIALS

$ docker run -d -p 3000:3000 --name mynode

opendronemap/nodeodm

$ docker stop mynode

$ docker rm mynode

Jumping Into Existing Containers

Sometimes you’d really like to know what the heck is going
on inside a container, without restarting it (you would lose its
state). For example, I sometimes wonder if WebODM is really
done downloading that long running task that seems to take
forever.

$ docker ps

CONTAINER ID IMAGE

COMMAND CREATED

STATUS PORTS

NAMES

aff69c390477 opendronemap/webodm_webapp "/bin

/bash -c 'chmod..." 46 hours ago Up 3

hours 0.0.0.0:8000->8000/tcp webapp

$ docker exec -ti aff69c390477 bash

root@aff69c390477:/webodm# ls app/media/project/<id>/

task/<id>/assets

all.zip images.json odm_orthophoto/ odm_dem/

...

The exec command allows you to execute a command from

183

OPENDRONEMAP: THE MISSING GUIDE

a running container. In this instance we choose to execute a
bash shell, which gives us a command prompt to inspect the
contents of the container while it’s running!

Making Changes Without Rebuilding Images

This is probably most useful to people that want to tinker with
ODM’s source code. You can modify ODM’s source code using
your IDE of choice, then create a container running the latest
version of ODM and volume map the source code directory to
the container’s /code directory as follows (assuming the source
code is in D:\ODM):

$ docker run -ti -v //d/ODM:/code -v //d/odmbook/

project:/datasets/example1 --entrypoint bash

opendronemap/odm

root@# bash configure.sh reinstall

./run.py --project-path /datasets example1

You can now edit the files in D:\ODM and the changes will be
reflected inside the container!

Docker is a powerful tool, but can also be a bit intimidating. I
hope this chapter removed some of the mysteries that surround
it, hopefully while sparking some curiosity. While it’s not
necessary to become a master of docker to use any of the
OpenDroneMap software, familiarity with it will certainly
help. The docker documentation website47 is a much more
comprehensive resource for those wishing to expand their

47 Docker Documentation: https://docs.docker.com/

184

DOCKER ESSENTIALS

knowledge.

185

12

Camera Calibration

In order to create accurate reconstructions, the software needs
to know the internal details of the cameras used for taking
the photos. These details are referred to as intrinsic camera
parameters and include values such as focal lengths, camera
centers and distortion parameters. Reading the specification
values from the manufacturer or looking this information from
a database is not sufficient to get accurate values. Defects in the
manufacturing process, vibrations and other factors can cause
these values to vary, even between identical camera models.

You might have noticed that you can process datasets and
obtain good results without performing any kind of camera
calibration. This is because modern photogrammetry software
(including OpenDroneMap) performs a kind of self-calibration
directly from the input images. Self-calibration tends to work
very well in OpenDroneMap, as long as:

1. Images are captured at different elevations.
2. Images are captured at varying angles (including both

nadir and angled shots).

186

CAMERA CALIBRATION

High overlap, near nadir images are not recommended48. This
is important to remember, as most mission planning software
will create exactly this type of pattern.

Typical flight path from mission planning software. Not great for
self-calibration

This doesn’t mean a person should never fly this pattern. It just
means that when flying this pattern, people need to be aware
that the reconstruction will not be as accurate. Over large areas,
this error accumulates and typically results in a doming effect.

Point cloud exhibiting doming. The terrain appears arched instead
of straight

48 Camera Calibration Considerations for UAV Photogrammetry:
https://www.isprs.org/tc2-symposium2018/images/ISPRS-Invited-
Fraser.pdf

187

OPENDRONEMAP: THE MISSING GUIDE

Doming is best cured by following best practices while col-
lecting aerial imagery: flying at different elevations (maximize
scale variation) and varying angles.

Unfortunately the luxury of capturing perfect images is not
always available. Perhaps a dataset has already been captured
and there’s no opportunity for a retake, or the area is too large
to cover in multiple passes.

A few options are available to attempt to correct this problem.

Option 1: Use an Existing Camera Model

This is the preferred method and the most likely to yield
improvements. With OpenDroneMap it’s possible to process
a good dataset (lots of overlap, varying elevations, different
angles, etc.) captured with the same camera and reuse the
camera parameters obtained from self-calibration on a different
dataset.

WebODM Instructions

After processing a good dataset, simply clickDownloadAssets
- Camera Parameters.

188

CAMERA CALIBRATION

This will save a cameras.json file. When creating a new task,
from the task options set the cameras option by selecting the
cameras.json file. The dataset will be processed using the
camera parameters previously computed.

189

OPENDRONEMAP: THE MISSING GUIDE

ODM Instructions

After processing is complete, a cameras.json file is always
saved in the root directory of the project. To reuse camera
parameters from an existing project, simply pass a path to a
cameras.json file via –cameras.

For example, if cameras.json is stored in D:\odm-
book\projects\test:

$ docker run -ti --rm -v //d/odmbook/projects/test:/

datasets/code opendronemap/odm --project-path /

datasets --cameras /datasets/code/cameras.json

Option 2: Generate a Camera Model From a
Calibration Target

An alternative method of obtaining good camera parameters is
from a calibration target. This is less likely to yield good results,
since self-calibration methods tend to work better. However, it
can be a useful method to know if it’s not possible to capture a
good dataset or if the self-calibration approach fails to generate
good results.

There are three steps to this process:
1. Taking pictures of a calibration target (usually a chess-

board pattern shot from different angles).
2. Extracting a camera profile from the the pictures.
3. Manually writing a cameras.json file.

190

CAMERA CALIBRATION

Taking Pictures of a Calibration Target

A calibration target is simply a known object that has recogniz-
able features. A chessboard pattern is frequently used since the
black/white contrast makes it easy to track via software.

Chessboard pattern

You can buy physical calibration targets from many retailers.
Projecting the pattern onto a large surface, such as a TV or a
large monitor also tends to work well. These patterns can be
easily generated from several websites such as calib.io49 .

49 Calib.io calibration pattern generator: https://calib.io/pages/camera-
calibration-pattern-generator

191

OPENDRONEMAP: THE MISSING GUIDE

Chessboard calibration target displayed using a Chromecast on a
TV

Go ahead and generate a 11x9 chessboard pattern, then load
it onto your monitor. Once the target is in place, using the
same camera you used for capturing a dataset, take between
5-9 pictures of the target at different angles. Try to retain the
same camera focus as you do that (disable auto focus).

Extracting a Camera Profile

There are many programs for extracting a camera profile from
the pictures of a calibration target. Because of it’s simplicity,
we’ll use Adobe™ Lens Profile Creator. It’s freely available for
download for Windows and Mac from Adobe’s site50.

Once downloaded and installed, open the program and press

50 Adobe™ Lens Profile Creator download page:
https://helpx.adobe.com/photoshop/digital-negative.html#resources

192

CAMERA CALIBRATION

File — Add Images to Project (CTRL+N). Select the images
previously shot of the calibration target and press Open.

Lens Profile Creator

The images should have loaded. Now, turning the attention to
the right side of the screen:

1. Type a Lens Name of your choice.
2. Select the appropriate type of lens of your camera. Rec-

tilinear lenses are lenses where straight objects such as
walls appear straight. Fisheye lenses make straight objects
appear curved (see below for an example).

3. From the Model section check only Geometric Dis-
tortion Model. We are not going to need chromatic
aberration and vignetting.

4. For Checkerboard Info type the number of rows and

193

OPENDRONEMAP: THE MISSING GUIDE

columns of your checkerboard target.
5. For Print dimension and screen dimension type to

the approximate size of a single square on the pattern in
physical units and pixels respectively (or leave the defaults).

6. From theAdvanced tab, for theRectilinear LensModel
and Fisheye Lens Model choose Two-Parameter Ra-
dial Distortion (if creating a simplified perspective or
fisheye camera model) or Five-Parameter Radial Distor-
tion (if creating a more complex brown camera model).

Fisheye (top) vs. Rectilinear lenses (bottom).
Image courtesy of Ashley Pomeroy, An example of Panorama Tools,

CC BY-SA 3.0
194

CAMERA CALIBRATION

From the top right corner, press the Generate Profiles button.
If the calibration is successful, you will be prompted to Save a
Profile (.lcp) file. Select a folder and remember its location for
the next step.

If you get an error, follow the recommendations on screen.
Errors are typically solved by taking better pictures of the
calibration target or adjusting the values in the Checkerboard
Info section. For troubleshooting issues we recommend
reading the Lens Profile Creator User Guide51.

Manually Writing a cameras.json File

With a text editor of your choice, go ahead and open both an
existing cameras.json file and the .lcp file you just generated.
The goal is to grab the calibration values from the .lcp file and
apply them to the cameras.json file. From the .lcp file look
for a rdf:parseType=”resource” entry:

<stCamera:PerspectiveModel rdf:parseType="Resource">

<stCamera:Version>2</stCamera:Version>

<stCamera:FocalLengthX>0.581968</stCamera:

FocalLengthX>

<stCamera:FocalLengthY>0.581968</stCamera:

FocalLengthY>

<stCamera:ImageXCenter>0.500000</stCamera:

ImageXCenter>

<stCamera:ImageYCenter>0.500000</stCamera:

ImageYCenter>

<stCamera:RadialDistortParam1>0.017524</stCamera:

RadialDistortParam1>

51 Adobe™ Lens Profile Creator User Guide:
https://wwwimages2.adobe.com/content/dam/acom/en/product-
s/photoshop/pdfs/lensprofile_creator_userguide.pdf

195

OPENDRONEMAP: THE MISSING GUIDE

<stCamera:RadialDistortParam2>-0.074705</stCamera:

RadialDistortParam2>

<stCamera:ResidualMeanError>0.000134</stCamera:

ResidualMeanError>

<stCamera:ResidualStandardDeviation>0.000227</

stCamera:ResidualStandardDeviation>

</stCamera:PerspectiveModel>

Currently your cameras.json file might look something like:

{

"v2 dji fc300s 4000 2250 perspective 0.5555": {

"focal_prior": 0.5555555,

"width": 4000,

"k1": 0.0,

"k2": 0.0,

"k1_prior": 0.0,

"k2_prior": 0.0,

"projection_type": "perspective",

"focal": 0.555555,

"height": 2250

}

}

(Your file will be different, this is an example)

Taking the focal and radial distortion values from the .lcp file,
rewrite the cameras.json file as follows:

{

"v2 dji fc300s 4000 2250 perspective 0.5555": {

"focal_prior": 0.581968,

196

CAMERA CALIBRATION

"width": 4000,

"k1": 0.017524,

"k2": -0.074705,

"k1_prior": 0.017524,

"k2_prior": -0.074705,

"projection_type": "perspective",

"focal": 0.581968,

"height": 2250

}

}

The mapping of values between the two files is as follows:

.lcp —> cameras.json

FocalLengthX,FocalLengthY —> focal,focal_x,focal_y

RadialDistortParam1 —> k1

RadialDistortParam2 —> k2

RadialDistortParam3 —> k3

TangentialDistortParam1 —> p1

TangentialDistortParam1 —> p2

ImageXCenter,ImageYCenter —> c_x,c_y

Depending on the type of camera and the computed lens model
some values might not be present (for example, there are no
tangential parameters in a simple perspective camera model,
but there are in a brown model).

The projection_type field is always one of perspective,
brown (a more complex perspective model named after the
work of Duane C. Brown and Alexander E. Conrady) or fisheye.
Any prior field should be filled with the same value as its non-
prior counterpart.

197

OPENDRONEMAP: THE MISSING GUIDE

Once completed, simply save the new cameras.json file. It’s
ready to be used.

Bonus: Checking Your LCP File by Manually
Removing Geometric Distortion

How do you know if your LCP file was computed correctly
before processing a dataset? One way to check for obvious
problems is to try to use it for manually removing lens distor-
tion from images and see if the distortion goes away.

There are several programs that can read .lcp camera profiles.
We’ll use Rawtherapee, because it’s a stable, free and open
source program available on all major platforms. Installers can
be downloaded directly from Rawtherapee’s website52. Once
installed, open it. Rawtherapee has lots of features and the
user interface might look a bit intimidating at first. Use the
reference image below to help navigate the next steps.

52 Rawtherapee’s download page: https://rawtherapee.com/downloads

198

CAMERA CALIBRATION

Rawtherapee’s reference image

1. Open the File Browser tab and click the drive where the
folder with your images is stored.

2. Navigate to the folder where your images are stored and
double-click it.

3. Select all images by pressing CTRL+A (or right-click and
Select all).

4. Open the Batch Edit tab, press the 3rd icon from the top
right and expand Lens / Geometry.

5. Expand Profiled Lens Correction.
6. Press the folder icon to select the previously exported

.lcp camera profile. After selecting it, make sure only
Distortion Correction is checked.

You should see the images in the center panel (3) changing
when you toggle the Distortion Correction checkbox. If you

199

OPENDRONEMAP: THE MISSING GUIDE

don’t see the images changing, triple-check that you performed
the steps above in order. The changes might be subtle if your
images do not have a lot of distortion. Once you are ready to
export the images, right-click the center panel (3) and press
Put to queue and open the Queue tab (1).

From the Queue tab:

1. Set the JPEG quality to 100 and subsamling to Best
Quality (or values that are reasonable if you don’t want
to lose image quality).

2. Press the Off button to start processing the images.

Geometrically undistorted images will be saved in the con-
verted folder within the directory of the input images.

200

CAMERA CALIBRATION

Original (top) and undistorted (bottom) image

Congratulations! If you’ve followed the steps, you should
now be comfortable with the process of using existing camera
parameters, using a calibration target to generate camera
parameters and the process of manually undistorting images.
Keep the camera files you generate in a folder for future use.
Just remember that vibrations and the environment could cause
your camera parameters to change. So once in a while it’s a
good idea to capture new ones.

Camera calibration is not a bullet-proofmethod for obtaining
better reconstructions. It is not a substitute for performing
good data capture. But it’s a step that can certainly help in
many scenarios, especially when witnessing the doming effect.

201

13

Processing Large Datasets

ODM can use a lot of memory while processing. These memory
requirements increase almost proportionally with the number
of images and their resolution. Twice the images? Need twice
the RAM! Of course at some point you might encounter a very
large dataset made of dozens of thousands of images, but don’t
have 800GB of RAM just lying around.

This is were a nice feature called split-merge comes into play.
This feature splits a large dataset into smaller, manageable parts
called submodels that have some overlap between them. Each
submodel is processed independently, either one at a time on a
singlemachine (local split-merge) or even in parallel onmultiple
machines (distributed split-merge)! Once all submodels have
been processed, the results are merged back together into a
single consistent model. With this approach people can process
much larger datasets using much less powerful computers.
Enabling split-merge changes the ODM execution pipeline:

202

PROCESSING LARGE DATASETS

Split-merge pipeline. Step 2 and 4 of the split section can be
performed in parallel on separate machines when using distributed

split-merge

Split-Merge Options

split

Split-merge can be used either from the command line (ODM)
or from WebODM and is turned on/off by setting the split
option. Split-merge will be turned on anytime the following
condition is true:

Split Option < Number of Images

203

OPENDRONEMAP: THE MISSING GUIDE

This option specifies the average number of images that should
be included in each submodel. Note that this does not guarantee
that your submodels will have this exact amount of images.
In fact, some submodels might end up having twice as many
images as others. It just means that the following expression
holds true:

(Sum of submodel images) / (number of submodels) =~

Split Value

In plain words: The sum of all submodel images divided

by the number of submodels is approximately equal

to the split value.

split-overlap

In order to align and merge results, each submodel must be
reconstructedwith a certain amount of overlap and redundancy
with other submodels.

204

PROCESSING LARGE DATASETS

Overlap area between two submodels

The amount of overlap in meters is specified with this option.
Datasets captured at higher altitudes should use a larger value,
while those captured at lower altitudes can use lower values.
More overlap will significantly slow down computation be-
cause of the redundancy of processed data, but can help achieve
better model alignment during the merge step. If the resulting
DEMs and point clouds from different submodels show big
gaps in elevation, try increasing the overlap.

205

OPENDRONEMAP: THE MISSING GUIDE

sm-cluster

This option enables distributed split-merge by specifying a
URL to a ClusterODM instance. The process of setting up
ClusterODM is described later in the Distributed Split-Merge
section of this chapter.

merge

After splitting and computing each individual submodel, results
need to be merged back together. By default all outputs (point
clouds, DEMs and orthophotos) are merged. A user can use this
option to specify that only a particular type of output should
be merged. Valid options are:

• all
• pointcloud
• orthophoto
• dem

Local Split-Merge

It’s really easy to use local split-merge. Simply pass the split
option and split-overlap options:

$ docker run -ti --rm -v //d/odmbook/project:/datasets

/code opendronemap/odm --project-path /datasets --

split 100 --split-overlap 75

In the example above, submodels will be stored in D:\odm-

206

PROCESSING LARGE DATASETS

book\project\submodels\ while the merged results will be
stored in the usual folders.

Each submodel folder (submodels\submodel_xxxx) is it-
self a valid OpenDroneMap project. So if a submodel fails
to process, you can re-run the individual submodel to isolate
potential issues by running:

$ docker run -ti --rm -v //d/odmbook/project:/datasets

/code opendronemap/odm --project-path /datasets/

code/submodels --orthophoto-cutline --dem-

euclidean-map submodel_xxxx

The orthophoto-cutline and dem-euclidean-map options
are always required for the purpose of merging DEMs and
orthophotos. If an error occurs while processing one of the
submodels, the process will stop. After fixing the problem, you
can resume by re-running the initial command:

$ docker run -ti --rm -v //d/odmbook/project:/datasets

/code opendronemap/odm --project-path /datasets --

split 100 --split-overlap 75

Submodels that correctly processed the first time will not be
re-processed, unless the rerun-from split option is passed.
Execution will resume from the failed submodel.

If a task fails at the merge step, after all submodels have
finished processing, you can check for issues and resume the
merge step by typing:

207

OPENDRONEMAP: THE MISSING GUIDE

$ docker run -ti --rm -v //d/odmbook/project:/datasets

/code opendronemap/odm --project-path /datasets --

split 100 --split-overlap 75 --rerun merge --merge

all

Distributed Split-Merge

Distributed split-merge works just like local split-merge, but
can be much faster, as submodels are processed independently
in parallel by many machines. All that is required is to setup an
instance of ClusterODM and link some NodeODM nodes to it.

ClusterODM

ClusterODM is a program to connect together NodeODM API
compatible nodes. It allows for tasks to be distributed across
multiple nodes while taking into consideration factors such as
maximum number of images, queue size and slot availability. It
can also automatically spin up/down nodes based on demand
using cloud computing providers (at the time of writing only
Digital Ocean and Amazon Web Services are supported, but
more are on the roadmap).

A ClusterODM looks like a normal NodeODM node from
the outside and can operate with any tool that also works with
NodeODM. To start ClusterODM, simply type:

$ git clone https://github.com/OpenDroneMap/ClusterODM

$ cd ClusterODM

$ docker-compose up

208

PROCESSING LARGE DATASETS

If you open your browser to http://localhost:10000 you should
be greeted with:

ClusterODM web admin page

ClusterODM has setup a default NodeODM node on the same
machine. Let’s add some more nodes. If you have another
computer with docker installed, you can run:

$ docker run -d -p 3000:3000 opendronemap/nodeodm

which will launch a new instance of NodeODM on port
3000. Now it’s time to connect our new NodeODM node
to ClusterODM. For that we’ll need to use an archaic but
functional tool called telnet. On Linux and macOS this tool is
usually installed by default (if it isn’t, Google how to install it).
On Windows you usually need to enable it. From an elevated
shell (right-click Git Bash and select Run As Administrator)
type:

$ pkgmgr /iu:"TelnetClient"

209

http://localhost:10000

OPENDRONEMAP: THE MISSING GUIDE

Then restart the shell. Once telnet is available, type:

$ telnet localhost 8080

Connected to ...

Escape character is '^]'.

...

#

Typing HELP will show you all available commands. To add a
NodeODM node use the NODE ADD command:

NODE ADD ipofmachine 3000

NODE LIST

1) nodeodm-1:3000 [online] [0/2] <version 1.5.1>

2) ipofmachine:3000 [online] [0/2] <version 1.5.1>

You’ll need to change ipofmachine with the IP address or
hostname of the computer running NodeODM.

To verify that things are working you can now open http:
//localhost:4000. If things are working you should see the
NodeODM web interface. This means ClusterODM is properly
forwarding requests to the NodeODM nodes.

You can connect as many nodes as you want to ClusterODM.
If you have a variety of computers, some more powerful
than others, you can start NodeODM instances with the
max_images option:

$ docker run -d -p 3000:3000 opendronemap/nodeodm --

max_images 300

210

http://localhost:4000
http://localhost:4000

PROCESSING LARGE DATASETS

This way NodeODM will be instructed to process datasets
only up to 300 images. ClusterODM will take this factor into
consideration when processing new tasks and will forward the
task to the first machine capable of handling it.

A useful command is NODE LOCK which will prevent a
certain node from being used by ClusterODM:

NODE LOCK 1

NODE LIST

1) nodeodm-1:3000 [online] [0/2] <version 1.5.1> [L]

2) ipofmachine:3000 [online] [0/2] <version 1.5.1>

In the setup above, all tasks will be forwarded to machine 2.
Nodes that are locked can be unlocked with NODE UNLOCK.

ClusterODM can also use cloud computing providers such
as Digital Ocean to spin up/down computing instances on
demand. Because this feature is relatively new, check the
ClusterODM README53 for the latest instructions on how to
configure it.

Distributed Run

Now that ClusterODM is setup, running distributed split-
merge is the same as running local split-merge, except that
we pass an additional sm-cluster option that specifies the URL
to a ClusterODM instance.

$ docker run -ti --rm -v //d/odmbook/project:/datasets

/code opendronemap/odm --project-path /datasets --

split 100 --split-overlap 75 --sm-cluster http://

53 ClusterODM: https://github.com/OpenDroneMap/ClusterODM

211

OPENDRONEMAP: THE MISSING GUIDE

ipofclusterodm:4000

There’s a small gotcha, if you are running this command on the
same machine as ClusterODM: ipofclusterodm cannot be lo-
calhost, because localhost refers to the opendronemap/odm
container and not your machine. To find out the correct IP
address, run:

$ docker ps

CONTAINER ID IMAGE

COMMAND CREATED

STATUS PORTS

NAMES

5a86a35fe643 opendronemap/clusterodm

"/usr/bin/nodejs /va..." 4 days ago

Up 2 hours 0.0.0.0:4000->3000/

tcp node-odm-1

$ docker inspect -f "{{range .NetworkSettings.Networks

}}{{.IPAddress}}{{end}}" 5a86

172.23.0.5

and use that IP instead. In the example above, we can then use
–sm-cluster http://172.23.0.5:4000.

212

PROCESSING LARGE DATASETS

Using Image Groups and GCPs

You can control how a dataset should be split by placing a
image_groups.txt file in your project folder. For example,
if your images are in D:\odmbook\project\images, you can
create a D:\odmbook\project\image_groups.txt file with
the following content:

1.JPG A

2.JPG A

3.JPG B

4.JPG B

5.JPG C

[...]

where the items on the left are image names and items on the
right represent submodel groups. If you run out of letters
simply use AA, BB, etc. The file is case-sensitive so uppercase
and lowercase letters are treated differently.

If this file is detected during split-merge, the split value will
be ignored and the dataset will be split according to the rules
specified in the image_groups.txt file. You will still need to
pass split to enable the split-merge workflow.

At the time of writing, image groups are currently not
supported in WebODM.

Image groups are important when using GCPs. GCPs can
be used with split-merge, but care should be exercised to make
sure there are at least 3 GCPs that fall within each submodel.
If less than 3 GCPs are present in a submodel, the submodel
will be aligned with the GPS information from EXIF data and

213

OPENDRONEMAP: THE MISSING GUIDE

by looking at the position of other submodels, but won’t be as
accurate.

You can use GCPs with split-merge just like you would use
GCPs for a normal run.

Limitations

With split-merge you get point clouds, DEMs and orthophotos,
but not 3D textured meshes. You can still access the individual
3D textured meshes from each submodel, but no global 3D
textured mesh is generated.

All of the problems listed in the Camera Calibration chapter
are magnified when using split-merge. It’s imperative to follow
the best practices for data acquisition and if possible, to use a
well calibrated camera model.

While the longest parts of processing can be parallelized in
distributed split-merge, a dataset still needs to be split, aligned
and merged on a single machine. The merge step in particular,
for really large datasets, could still make the machine run out of
memory. Choose orthophoto-resolution, dem-resolution
anddepthmap-resolution parameters conservatively. Use the
most powerful machine you have available to start a distributed
split-merge task.

214

14

The NodeODM API

ODM is a processing engine and WebODM is a friendly
user interface. NodeODM54 was historically built to allow
WebODM to communicate with ODM over a network. Today
NodeODM has expanded its role and is the glue that binds
together the entire suite of OpenDroneMap projects. Each
project understands the API that NodeODM defines. When
we say NodeODM we are referring to the reference implemen-
tation of the NodeODM API available at https://github.com/
OpenDroneMap/NodeODM.

At its core, the API defines ways to easily create new tasks,
manage such tasks (cancel, delete, restart), download results
and query status information.

54 Node is a reference to Node.js, the language NodeODM is written in.

215

https://github.com/OpenDroneMap/NodeODM
https://github.com/OpenDroneMap/NodeODM

OPENDRONEMAP: THE MISSING GUIDE

OpenDroneMap projects use the NodeODM API to communicate
with each other

It’s interesting to note the NodeODM API has also been
adopted by projects outside the OpenDroneMap ecosystem.
For example, the NodeMICMAC project55 has successfully
implemented an aerial image processing pipeline using the open
source MicMac photogrammetry engine as an alternative to
ODM. This move has allowed the project to re-use and work
in sync with all of the other tools within the OpenDroneMap
ecosystem.

In this chapter we’ll learn to manually launch a NodeODM
instance, explore its web interface and do some manual inter-
action with the API using cURL, a program that allows us to
make web requests. Familiarity with the NodeODM API can
give users a better understanding of the network interactions
that happen between the various projects.

The API has different versions and tries to be backward
compatible with previous implementations whenever a new
version is released. The most up-to-date specification is
available online56, while a copy of the latest specification at

55 NodeMICMAC: https://github.com/dronemapper-io/NodeMICMAC/
56 NodeODM specification: https://github.com/OpenDroneMap/NodeOD-

M/blob/master/docs/index.adoc

216

THE NODEODM API

the time of writing is reported for reference at the end of this
chapter.

Launching a NodeODM Instance

Starting NodeODM is as simple as running:

$ docker run -d -p 3000:3000 opendronemap/nodeodm

Opening a web browser to http://localhost:3000 loads the
NodeODM interface. The interface is minimal on purpose as it
doesn’t try to compete with the more advanced functionalities
of WebODM. It’s mostly a test bed for testing the API functions.

NodeODM’s web interface

From the web interface you can upload images, set task options,
monitor and manage tasks, retrieve console outputs and down-
load results. Not all functions of the API are exposed through
the web interface, but most are.

217

http://localhost:3000

OPENDRONEMAP: THE MISSING GUIDE

NodeODM Configuration

You can pass several options while launching NodeODM. The
full list is available by running:

$ docker run --rm -ti opendronemap/nodeodm --help

Usage: node index.js [options]

Options:

--config <path> Path to the configuration file

(default: config-default.json)

-p, --port <number> Port to bind the

server to (default: 3000)

--odm_path <path> Path to OpenDroneMap's

code (default: /code)

--log_level <logLevel> Set log level

verbosity (default: info)

-d, --deamonize Set process to run as

a deamon

-q, --parallel_queue_processing <number>

Number of simultaneous processing tasks (

default: 2)

--cleanup_tasks_after <number> Number of

minutes that elapse before deleting

finished and canceled tasks (default:

2880)

--cleanup_uploads_after <number> Number of

minutes that elapse before deleting

unfinished uploads. Set this value to the

maximum time you expect a dataset to be

uploaded. (default: 2880)

--test Enable test mode. In test mode, no

commands are sent to OpenDroneMap. This

can be useful during development or

testing (default: false)

218

THE NODEODM API

--test_skip_orthophotos If test mode is

enabled, skip orthophoto results when

generating assets. (default: false)

--test_skip_dems If test mode is

enabled, skip dems results when generating

assets. (default: false)

--test_drop_uploads If test mode is

enabled, drop /task/new/upload requests

with 50% probability. (default: false)

--test_fail_tasks If test mode is

enabled, mark tasks as failed. (default:

false)

--test_seconds If test mode is enabled, sleep

these many seconds before finishing

processing a test task. (default: 0)

--powercycle When set, the application

exits immediately after powering up.

Useful for testing launch and compilation

issues.

--token <token> Sets a token that needs to be

passed for every request. This can be used

to limit access to the node only to token

holders. (default: none)

--max_images <number> Specify the maximum

number of images that this processing node

supports. (default: unlimited)

--webhook <url> Specify a POST URL endpoint to

be invoked when a task completes

processing (default: none)

--s3_endpoint <url> Specify a S3 endpoint

(for example, nyc3.digitaloceanspaces.com)

to upload completed task results to. (

default: do not upload to S3)

--s3_bucket <bucket> Specify a S3 bucket

name where to upload completed task

results to. (default: none)

219

OPENDRONEMAP: THE MISSING GUIDE

--s3_access_key <key> S3 access key,

required if --s3_endpoint is set. (default

: none)

--s3_secret_key <secret> S3 secret key,

required if --s3_endpoint is set. (

default: none)

--s3_signature_version <version> S3

signature version. (default: 4)

--s3_upload_everything Upload all task

results to S3. (default: upload only .zip

archive and orthophoto)

--max_concurrency <number> Place a cap on

the max-concurrency option to use for

each task. (default: no limit)

Log Levels:

error | debug | info | verbose | debug | silly

The most important ones are described below.
• -q controls how many tasks can be processed in parallel.
• –max_images puts a limit on the maximum number of

images that the node can accept.
• –token sets an access key to authenticate users. This is

useful if you are setting up NodeODM on a public server
and want to restrict access.

• –cleanup_tasks_after allows you to shorten/lengthen the
time that it takes for completed tasks to be automatically
removed from disk (expressed in number of seconds). If
you are running out of space, this option can help free disk
space more quickly.

220

THE NODEODM API

Using the API with cURL

In the following examples we will use the curl program to
interact directly with the API to upload some images, query
task status and download results. Curl can be downloaded for
any platform from https://curl.haxx.se/download.html.

There’s almost no practical reason for using cURL to interact
with NodeODM, aside from the learning experience and for
the occasional troubleshooting. If you need to interact with
NodeODM from the command line, CloudODM57 is probably
a much better tool for the job.

But since we are learning, cURL will be used here.

Create a New Task

If you have some images inD:\odmbook\project\images you
can issue:

$ pwd

/d/odmbook/project

$ curl -F images=@images/DJI_0018.JPG -F images=

@images/DJI_0019.JPG -F name=Test -X POST http://

localhost:3000/task/new

{"uuid":"c99f32a8-d3b2-48d2-adfb-6c8e14e405e3"}

You can use more images by adding more -F images parame-
ters.

With this command we created a new task and named it

57 CloudODM: https://github.com/OpenDroneMap/CloudODM/

221

https://curl.haxx.se/download.html

OPENDRONEMAP: THE MISSING GUIDE

Test. The name field was passed via a FormData parameter.
Some API functions accept parameters via Query and Body
parameters also. We’ll look at examples of both later. The API
communicates via a format called JSON (JavaScript Object
Notation). JSON is a simple human readable format. For
example, if an error occurs, the program will output:

{"error": "description of the error"}

In the case of a successful call to /task/new we received back
the task ID (identifier) that was created.

Query Task Information

After a task is created, we can query its status by referencing
its ID using /task/<uuid>/info:

$ curl http://localhost:3000/task/c99f32a8-d3b2-48d2-

adfb-6c8e14e405e3/info

{"uuid":"131ee2a5-9757-46e9-8491-81d2d4558680","name

":"Test","dateCreated":1560702697082,"

processingTime":17655,"status":{"code":30,"

errorMessage":"Process exited with code 1"},"

options":[],"imagesCount":2,"progress":100}

We can also display the entire task output by invoking:

222

THE NODEODM API

$ curl http://localhost:3000/task/c99f32a8-d3b2-48d2-

adfb-6c8e14e405e3/output

["[INFO] Initializing OpenDroneMap app - Sun Jun 16

16:28:16 2019","[DEBUG] ==============","[

DEBUG] build_overviews: False","[DEBUG] crop:

3","[DEBUG] dem_decimation: 1","[DEBUG]

dem_euclidean_map: False","[DEBUG]

dem_gapfill_steps: 3","[DEBUG] dem_resolution:

5","[DEBUG] depthmap_resolution: 640", ...

Or use the optional ?line= Query parameter to retrieve the last
2 lines of output:

$ curl http://localhost:3000/task/c99f32a8-d3b2-48d2-

adfb-6c8e14e405e3/output?line=-2

["if bbox is None: raise Exception(\"Cannot compute

bounds for %s (bbox key missing)\" %

input_point_cloud)","Exception: Cannot compute

bounds for /var/www/data/c99f32a8-d3b2-48d2-adfb-6

c8e14e405e3/odm_filterpoints/point_cloud.ply (bbox

key missing)"]

Query parameters are passed directly via URLs.
So far we saw examples of passing Query and FormData

parameters. Next we’ll look at passing Body parameters.

Remove a Task

We can invoke /task/delete to delete a task:

223

OPENDRONEMAP: THE MISSING GUIDE

$ curl -d uuid=c99f32a8-d3b2-48d2-adfb-6c8e14e405e3

http://localhost:3000/task/remove

{"success":true}

Note the task ID is passed via a uuid Body parameter.

API Specification

Version: 1.5.3

GET /auth/info

Description: Retrieves login information for this node.
Response:

224

THE NODEODM API

POST /auth/login

Description: Retrieve a token from a username/password
pair.
Parameters:

Responses:

225

OPENDRONEMAP: THE MISSING GUIDE

POST /auth/register

Description: Register a new username/password.
Parameters:

Responses:

GET /info

Description: Retrieves information about this node.
Parameters:

Responses:

226

THE NODEODM API

GET /options

Description: Retrieves the command line options that can be
passed to process a task.
Parameters:

227

OPENDRONEMAP: THE MISSING GUIDE

Responses:

POST /task/cancel

Description: Cancels a task (stops its execution, or prevents
it from being executed).
Parameters:

228

THE NODEODM API

Responses:

POST /task/new

Description: Creates a new task and places it at the end of
the processing queue. For uploading really large tasks, see
/task/new/init instead.
Parameters:

229

OPENDRONEMAP: THE MISSING GUIDE

230

THE NODEODM API

Responses:

231

OPENDRONEMAP: THE MISSING GUIDE

POST /task/new/commit/{uuid}

Description: Creates a new task for which images have been
uploaded via /task/new/upload.
Parameters:

Responses:

232

THE NODEODM API

POST /task/new/init

Description: Initialize the upload of a new task. If successful,
a user can start uploading files via /task/new/upload. The
task will not start until /task/new/commit is called.
Parameters:

233

OPENDRONEMAP: THE MISSING GUIDE

Responses:

234

THE NODEODM API

POST /task/new/upload/{uuid}

Description: Adds one or more files to the task created via
/task/new/init. It does not start the task. To start the task,
call /task/new/commit.
Parameters:

Responses:

235

OPENDRONEMAP: THE MISSING GUIDE

POST /task/remove

Description: Removes a task and deletes all of its assets.
Parameters:

Responses:

POST /task/restart

Description: Restarts a task that was previously canceled, that
had failed to process or that successfully completed.
Parameters:

236

THE NODEODM API

Responses:

GET /task/{uuid}/download/{asset}

Description: Retrieves an asset (the output of Open-
DroneMap’s processing) associated with a task.
Parameters:

237

OPENDRONEMAP: THE MISSING GUIDE

Responses:

GET /task/{uuid}/info

Description: Gets information about this task, such as name,
creation date, processing time, status, command line options
and number of images being processed.
Parameters:

238

THE NODEODM API

Responses:

239

OPENDRONEMAP: THE MISSING GUIDE

240

THE NODEODM API

GET /task/{uuid}/output

Description: Retrieves the console output of the Open-
DroneMap’s process. Useful for monitoring execution and to
provide updates to the user.
Parameters:

Responses:

241

OPENDRONEMAP: THE MISSING GUIDE

Definitions

Error

Response

Exercises

Armed with your new knowledge, read the NodeODM specifi-
cation document and try to perform the following tasks:

• The API defines two ways to new tasks. We’ve already used
/task/new, which is a simplified method that uploads all
images at once. NodeODM also exposes a chunked API
for uploading images in parallel. Using /task/new/init,
/task/new/upload and /task/new/commit, can you cre-
ate a task using them?

242

THE NODEODM API

• JSON can be used to specify task options. For example,
to set the processing option orthophoto-resolution
we first encode it to JSON [{“name”:“orthophoto-
resolution”,“value”:“2”}] then, we can pass it to the options
FormData parameter of /task/new. Search Google for
information on the JSON format and how to use arrays.
Afterwards, can you find a way to pass multiple options to
/task/new?

• Can you restart NodeODM with the token parameter to
add an authentication token and then invoke any of the
API functions using the ?token= Query parameter in the
URLs? What happens if you forget to pass the token to
your URLs?

If you get stuck, ask for help on the OpenDroneMap forum58.

58 OpenDroneMap Forum: https://community.opendronemap.org

243

15

Automated Processing With Python

What’s better than aerial data processing? Automated aerial
data processing of course!

In The NodeODM API chapter we’ve learned how to use the
NodeODM API by using cURL. Now we will learn about Py-
ODM, a Python library for communicating with theNodeODM
API. Python is a programming language that is used by many
OpenDroneMap projects and is popular language in the GIS
community. This chapter will not try to teach the fundamentals
of Python, as there are already plenty of free online resources
for that59. Previous knowledge of Python is preferred, but not
required. Python is a very descriptive language and readers
should be able to follow the examples even without formal
training in Python.

Why would you want to use Python (instead of cURL or
CloudODM)? With Python you can leverage the image process-
ing capabilities of ODM to create new, custom applications that
have an aerial image processing component. For example, you

59 Python for Beginners: https://www.python.org/about/gettingstarted/

244

AUTOMATED PROCESSING WITH PYTHON

could build:
• A platform for counting trees using modern computer

vision techniques after a user uploads drone images.
• An application that detects when SD cards are inserted in

a computer and automatically processes images without
user interaction.

• An application for extracting video frame segments from
YouTube and automatically generating 3D reconstructions
from scenes of your favorite movies.

Obviously each of these applications can be complex and
requires coding skills, but PyODM would help you with the
image processing part of the implementation.

It should be noted that PyODM does a bit more than a
simply communicating with NodeODM, as it deals with things
such as managing parallel downloads (a sort of download
accelerator which makes network transfers faster), parallel
uploads, automatic retries for fault tolerance, as well as dealing
with backward-compatibility issues between API versions.

Getting Started

If you have already installed Python (see Installing The Software
chapter), all you need to do from a terminal is type:

$ pip install -U pyodm

which will install the pyodm package. Afterwards, make sure to
start a NodeODM instance via:

245

OPENDRONEMAP: THE MISSING GUIDE

$ docker run -d -p 3000:3000 opendronemap/nodeodm

You can use any text editor you want to write Python code. I
prefer to use the free and open source Visual Studio Code60

but any text editor will do. All examples below are also avail-
able for download from https://github.com/MasseranoLabs/
odmbook-assets.

Example 1: Hello NodeODM

Type the following program into a new file using your text
editor, then save it as hello.py.

from pyodm import Node, exceptions

node = Node('localhost', 3000)

try:

print(node.info())

except exceptions.NodeConnectionError as e:

print("Cannot connect: " + str(e))

Then run it:

$ python hello.py

{'version': '1.5.2', 'task_queue_count': 0, '

total_memory': 1021136896, 'available_memory':

436518912, 'cpu_cores': 2, 'max_images': None, '

60 Visual Studio Code: https://code.visualstudio.com/

246

https://github.com/MasseranoLabs/odmbook-assets
https://github.com/MasseranoLabs/odmbook-assets

AUTOMATED PROCESSING WITH PYTHON

max_parallel_tasks': 2, 'engine': 'odm', '

engine_version': '0.6.0', 'odm_version': '?'}

We have successfully retrieved the NodeODM instance infor-
mation. We also check for any connection errors just in case
we have forgotten to launch the NodeODM instance and print
an error message if we can’t connect to the node.

There are a few different types of errors (exceptions in Python
jargon) that we can handle:

• OdmError: A generic catch-all exception related to any-
thing PyODM

• NodeServerError: The server replied in a manner which
we did not expect. Usually this indicates a temporary
malfunction of the node

• NodeConnectionError: A connection problem (such as
a timeout or a network error) has occurred

• NodeResponseError: The node responded with an error
message indicating that the requested operation failed

• TaskFailedError: A task did not complete successfully

Example 2: Process Datasets

For this example, save it as process.py and place the file
in the same folder where some aerial images are stored (e.g.
D:\odmbook\project\images):

247

OPENDRONEMAP: THE MISSING GUIDE

import glob

from pyodm import Node, exceptions

node = Node("localhost", 3000)

try:

Get all JPG files in directory

images = glob.glob("*.JPG") + glob.glob("*.jpg") +

glob.glob("*.JPEG") + glob.glob("*.jpeg")

print("Uploading images...")

task = node.create_task(images, {'dsm': True, '

orthophoto-resolution': 2})

print(task.info())

try:

def print_status(task_info):

msecs = task_info.processing_time

seconds = int((msecs / 1000) % 60)

minutes = int((msecs / (1000 * 60)) % 60)

hours = int((msecs / (1000 * 60 * 60)) %

24)

print("Task is running: %02d:%02d:%02d" %

(hours, minutes, seconds), end="\r")

task.wait_for_completion(status_callback=

print_status)

print("Task completed, downloading results

...")

Retrieve results

def print_download(progress):

print("Download: %s%%" % progress, end="\r

")

task.download_assets("./results",

progress_callback=print_download)

248

AUTOMATED PROCESSING WITH PYTHON

print("Assets saved in ./results")

except exceptions.TaskFailedError as e:

print("\n".join(task.output()))

except exceptions.NodeConnectionError as e:

print("Cannot connect: %s" % e)

except exceptions.OdmError as e:

print("Error: %s" % e)

Then run it via:

$ pwd

/d/odmbook/project/images

$ python process.py

Uploading images...

{'uuid': 'cc751818-36af-41e9-92d2-bc146cdee10c', 'name

': 'Task of 2019-06-16T21:00:02.502Z', '

date_created': datetime.datetime(2019, 6, 16, 21,

0, 2), 'processing_time': 1, 'status': <TaskStatus

.RUNNING: 20>, 'last_error': '', 'options': [{'

name': 'orthophoto-resolution', 'value': 2}, {'

name': 'dsm', 'value': True}], 'images_count': 18,

'progress': 0, 'output': []}

Task completed, downloading results...

Assets saved in ./results

This is a more comprehensive example. First, we create
a Node instance. From that instance we can create new
tasks via create_task() which take as input a list of image
paths (which we generate via the glob function) and returns
a Task instance. We then wait for the results to be ready via

249

OPENDRONEMAP: THE MISSING GUIDE

wait_for_completion() and we ask to be notified of status
updates by displaying how long the task has been running
for. If a task fails at any point in time, wait_for_completion()
raises a TaskFailerError. We “catch” that error and display
the task output to the user if that happens. When the task
completes, we download the results and display download
progress information.

Concluding Remarks

PyODM is a simple module that makes it straightforward
to leverage the capabilities of OpenDroneMap with Python.
It’s also a module used within ODM and WebODM and will
continue to be well supported in the future. If you need to use
NodeODM with a different programming language, you can
use PyODM as a reference to write a client for your language
of choice.

API Reference

The following reference is from PyODM version 1.5.2b (the
latest version as of the writing of this book). The reference
to the latest version can be found online at https://pyodm.
readthedocs.io

class pyodm.api.Node(host, port, token=’’, timeout=30)

A client to interact with NodeODM API.
Parameters:
• host (str) – Hostname or IP address of processing node
• port (int) – Port of processing node

250

https://pyodm.readthedocs.io
https://pyodm.readthedocs.io

AUTOMATED PROCESSING WITH PYTHON

• token (str) – token to use for authentication
• timeout (int) – timeout value in seconds for network

requests

create_task(files, options{}, name=None, progress_callback=None,
skip_post_processing=False, webhook=None, outputs=[], paral-
lel_uploads=10, max_retries=5, retry_timeout=5)

Start processing a new task. At a minimum you need to pass
a list of image paths. All other parameters are optional.
Parameters:

• files (list) – list of image paths + optional GCP file path.
• options (dict) – options to use, for example {‘orthophoto-

resolution’: 3, ...}
• name (str) – name for the task
• progress_callback (function) – callback reporting upload

progress percentage
• skip_post_processing (bool) – When true, skips genera-

tion of map tiles, derivate assets, point cloud tiles.
• webhook (str) – Optional URL to call when processing has

ended (either successfully or unsuccessfully).
• outputs (list) – Optional paths relative to the project

directory that should be included in the all.zip result file,
overriding the default behavior.

• parallel_uploads (int) – Number of parallel uploads.
• max_retries (int) – Number of attempts to make before

giving up on a file upload.
• retry_timeout (int) – Wait at least these many seconds

before attempting to upload a file a second time, multiplied
by the retry number.

Returns:

251

OPENDRONEMAP: THE MISSING GUIDE

Task()

static from_url(url, timeout=30)
Create a Node instance from a URL.

>>> n = Node.from_url("http://localhost:3000?token=abc

")

Parameters:
• url (str) – URL in the format proto://hostname:port/?to-

ken=value
• timeout (int) – timeout value in seconds for network

requests

Returns:
Node()

get_task(uuid)
Helper method to initialize a task from an existing UUID

Parameters:
uuid – Unique identifier of the task

info()
Retrieve information about this node

Returns:
NodeInfo()

options()
Retrieve the options available for creating new tasks on this

node.

252

AUTOMATED PROCESSING WITH PYTHON

Returns:
[NodeOption()]

url(url, query={})
Get a URL relative to this node.

Parameters:
• url (str) – relative URL
• query (dict) – query values to append to the URL

Returns:
Absolute URL (str)

version_greater_or_equal_than(version)
Checks whether this node version is greater than or equal

than a certain version number
Parameters:
version (str) – version number to compare

Returns:
bool

class pyodm.api.Task(node, uuid)

A task is created to process images. To create a task, use
create_task().
Parameters:

• node (Node()) – node this task belongs to
• uuid (str) – Unique identifier assigned to this task.

cancel()
Cancel this task.

Returns:

253

OPENDRONEMAP: THE MISSING GUIDE

task was canceled or not (bool)

download_assets(destination, progress_callback=None, paral-
lel_downloads=16, parallel_chunks_size=10)

Download this task’s assets to a directory.
Parameters:

• destination (str) – directory where to download assets. If
the directory does not exist, it will be created.

• progress_callback (function) – an optional callback with
one parameter, the download progress percentage

• parallel_downloads (int) – maximum number of parallel
downloads if the node supports http range.

• parallel_chunks_size (int) – size in MB of chunks for
parallel downloads

Returns:
path to saved assets (str)

download_zip(destination, progress_callback=None, paral-
lel_downloads=16, parallel_chunks_size=10)

Download this task’s assets archive to a directory.
Parameters:

• destination (str) – directory where to download assets
archive. If the directory does not exist, it will be created.

• progress_callback (function) – an optional callback with
one parameter, the download progress percentage.

• parallel_downloads (int) – maximum number of parallel
downloads if the node supports http range.

• parallel_chunks_size (int) – size in MB of chunks for
parallel downloads

254

AUTOMATED PROCESSING WITH PYTHON

Returns:
path to .zip archive file (str)

info(with_output=None)
Retrieves information about this task.

Returns:
TaskInfo()

output(line=0)
Retrieve console task output.

Parameters:
line (int) – Optional line number that the console output

should be truncated from. For example, passing a value of 100
will retrieve the console output starting from line 100. Negative
numbers are also allowed. For example -50 will retrieve the last
50 lines of console output. Defaults to 0 (retrieve all console
output).
Returns:

console output (one list item per row) ([str])

remove()
Remove this task.

Returns:
task was removed or not (bool)

restart(options=None)
Restart this task.

Parameters:
options (dict) – options to use, for example {‘orthophoto-

resolution’: 3, ...}
Returns:

255

OPENDRONEMAP: THE MISSING GUIDE

task was restarted or not (bool)

wait_for_completion(status_callback=None, interval=3,
max_retries=5, retry_timeout=5)

Wait for the task to complete. The call will block until
the task status has become COMPLETED(). If the status is
set to CANCELED() or FAILED() it raises a TaskFailedError
exception.
Parameters:

• status_callback (function) – optional callback that will be
called with task info updates every interval seconds.

• interval (int) – seconds between status checks.
• max_retries (int) – number of repeated attempts that

should be made to receive a status update before giving
up.

• retry_timeout (int) – wait N*retry_timeout between at-
tempts, where N is the attempt number.

class pyodm.types.NodeInfo(json)

Information about a node
Parameters:

• version (str) – Current API version
• task_queue_count (int) – Number of tasks currently

being processed or waiting to be processed
• total_memory (int) – Amount of total RAM in the system

in bytes
• available_memory (int) – Amount of RAM available in

bytes
• cpu_cores (int) – Number of virtual CPU cores

256

AUTOMATED PROCESSING WITH PYTHON

• max_images (int) – Maximum number of images allowed
for new tasks or None if there’s no limit.

• max_parallel_tasks (int) – Maximum number of tasks
that can be processed simultaneously

• odm_version (str) – Current version of ODM (deprecated,
use engine_version instead)

• engine (str) – Lowercase identifier of the engine (odm,
micmac, ...)

• engine_version (str) – Current engine version

class pyodm.types.NodeOption(domain, help, name,
value, type)

A node option available to be passed to a node.
Parameters:

• domain (str) – Valid range of values
• help (str) – Description of what this option does
• name (str) – Option name
• value (str) – Default value for this option
• type (str) – One of: [‘int’, ‘float’, ‘string’, ‘bool’, ‘enum’]

class pyodm.types.TaskInfo(json)

Task information
Parameters:

• uuid (str) – Unique identifier
• name (str) – Human friendly name
• date_created (datetime) – Creation date and time
• processing_time (int) – Milliseconds that have elapsed

257

OPENDRONEMAP: THE MISSING GUIDE

since the start of processing, or -1 if no information is
available.

• status (pyodm.types.TaskStatus()) – status (running,
queued, etc.)

• last_error (str) – if the task fails, this will be set to a string
representing the last error that occured, otherwise it’s an
empty string.

• options (dict) – options used for this task
• images_count (int) – Number of images (+ GCP file)
• progress (float) – Percentage progress (estimated) of the

task
• output ([str]) – Optional console output (one list item per

row). This is populated only if the with_output parameter
is passed to info().

class pyodm.types.TaskStatus

Task status
Parameters:

• QUEUED – Task’s files have been uploaded and are
waiting to be processed.

• RUNNING – Task is currently being processed.
• FAILED – Task has failed for some reason (not enough

images, out of memory, etc.
• COMPLETED – Task has completed. Assets are be ready

to be downloaded.
• CANCELED – Task was manually canceled by the user.

258

Glossary

2.5D Model: A model where elevation is simply extruded from
the ground plane and thus is not a true 3D model.
Artifacts: undesired alterations generated as the result of a
digital process.
API: Application Programming Interface. A set of functions
allowing the creation of applications that access the features or
data of another application.
AWS: Amazon Web Services is a cloud service provider.
Bundle Adjustment: a refinement step during the Structure
From Motion process that improves the location of cameras,
the 3D points of the scene and the camera parameters.
CloudODM: A command line tool to process aerial imagery
in the cloud.
ClusterODM: A NodeODM API compatible autoscalable load
balancer and task tracker for connecting multiple NodeODM
nodes under a single network address.
CRS: Coordinate Reference System. A CRS is a coordinate-
based system used to locate geographical entities.
CSV: Comma Separated Value is a textual file format where
fields are typically separated by commas or some other charac-
ter such as a space or a tab.
cURL: a software providing a library and command-line tool
for transferring data using many protocols.
DEM: Digital Elevation Model (either a DSM or a DTM).

259

OPENDRONEMAP: THE MISSING GUIDE

Depthmap: An image containing distance information for
objects in a scene relative to the camera plane.
Docker: a tool used to launch containers, lightweight stan-
dalone packages of software. OpenDroneMap uses docker
to run many of its software. Docker is also the name of the
company that develops the tool.
DSM: Digital Surface Model. A 2D representation of elevation
that includes terrain, buildings, trees and other structures.
DTM: Digital Terrain Model. A 2D representation of elevation
that includes terrain only.
EXIF: Exchangeable file format for images and their auxiliary
tags. EXIF tags are pieces of information embedded within
an image. They can include information such as camera
model, GPS location of where the image was shot, focal length
information and many more.
GCP: Ground Control Point. A GCP is a position measurement
made on the ground, often taken at the location of a clearly
identifiable marker, to increase the georeferencing accuracy of
a reconstruction.
GSD: Ground Sampling Distance. In an aerial photo, it’s the
distance between pixels measured on the ground.
Mesh: A collection of vertices, edges and faces that define
the shape of a 3D model. A mesh does not include color
information such as textures.
MVE: Multi-View Environment is a suite of software packages
developed to ease the work with multi-view datasets and to
support the development of algorithms based onmultiple views.
It features Structure from Motion, Multi-View Stereo and
Surface Reconstruction algorithms.
MVS: Multi-View Stereo is a branch of study in computer
vision that focuses on the reconstruction of 3D models from

260

GLOSSARY

multiple overlapping image pairs. MVS programs expect that
information about cameras has already been computed.
NodeODM: A lightweight REST API to access aerial image
processing engines such as ODM or MicMac.
Noise: An unwanted interference. When applied to point
clouds, it indicates points that should not be present or that
were missed during outlier filtering.
Nadir: The direction pointing directly below a particular
location.
ODM: A command line toolkit to generate maps, point clouds,
3D models and DEMs from drone, balloon or kite images.
OpenSfM:Open source structure from Motion library written
in Python. The library serves as a processing pipeline for
reconstructing camera poses and 3D scenes from multiple
images.
Orthophoto: An image that has been orthorectified, warped in
such a way that distances and scales are uniform.
Photogrammetry: the process of obtaining reliable informa-
tion about physical objects and the environment through the
process of using photographic images.
Preemptive Matching: During the Structure From Motion
process, the act of reducing the possible number of pair
candidates by using the location information stored in the EXIF
tags of the images.
PyODM: A Python SDK for adding aerial image processing
capabilities to applications.
RTK: Real Time Kinematics. A satellite navigation technique
used to enhance the precision of position data derived from
satellite-based positioning systems.
SDK: Software Development Kit. A set of libraries, tools and
examples that help software developers to build software with

261

a particular technology.
SFM: Structure From Motion is a photogrammetry technique
for estimating 3D objects (structures) from overlapping image
sequences (from motion).
Texturing: The act of creating 2D images suitable for use on
3D models, also known as texture maps or texture skins. Textures
give 3D models a realistic appearance.
UAV: Unmanned Aerial Vehicle. An aircraft piloted by remote
control or on-board computers.
UI: User Interface.
UTM:Universal Transverse Mercator is a coordinate reference
system. It ignores altitude and treats the earth as a perfect
ellipsoid.
Virtualization: the act of creating a virtual version of com-
puter hardware platforms, storage devices, and computer
network resources.
VM: Virtual Machine. A software program or operating system
that works like a separate computer.
WebODM: User-friendly, extendable application and API for
processing aerial imagery.
WSL: Windows Subsystem for Linux. A feature of Windows
10 that allows Linux programs to run natively on Windows.

262

About the Author

Piero Toffanin is a software developer currently focused on
geospatial and drone software development. He has been
working on open source software for over 21 years. Since
2016 he is an OpenDroneMap core developer and frequently
speaks at conferences about OpenDroneMap, geospatial and
open source.

You can connect with me on:
https://piero.dev
https://masseranolabs.com

263

https://piero.dev
https://masseranolabs.com

	Preface
	Acknowledgement
	Gold Supporters
	Silver Supporters

	I Introduction
	Why OpenDroneMap?
	What You Can Do with OpenDroneMap
	The Key To Becoming a Successful User

	II Getting Started
	Installing The Software
	Hardware Requirements
	Installing on Windows
	Installing on macOS
	Installing on Linux
	Basic Commands and Troubleshooting
	Hello, WebODM!

	Processing Datasets
	Dataset Size
	File Requirements
	Process Tasks
	Output Results
	Share With Others
	Export To Another WebODM
	Manage Plugins
	Change The Look & Feel
	Create New Users
	Manage Permissions
	How Does WebODM Process Images?

	The Processing Pipeline
	Load Dataset
	Structure From Motion
	Multi View Stereo
	Meshing
	Texturing
	Georeferencing
	Digital Elevation Model Processing
	Orthophoto Processing

	Task Options in Depth
	build-overviews
	cameras
	crop
	debug
	dem-decimation
	dem-euclidean-map
	dem-gapfill-steps
	dem-resolution
	depthmap-resolution
	dsm
	dtm
	end-with
	fast-orthophoto
	gcp
	help
	ignore-gsd
	matcher-distance
	matcher-neighbors
	max-concurrency
	merge
	mesh-octree-depth
	mesh-point-weight
	mesh-samples
	mesh-size
	min-num-features
	mve-confidence
	opensfm-depthmap-method
	opensfm-depthmap-min-patch-sd
	orthophoto-bigtiff
	orthophoto-compression
	orthophoto-cutline
	orthophoto-no-tiled
	orthophoto-resolution
	pc-classify
	pc-csv
	pc-ept
	pc-filter
	pc-las
	rerun
	rerun-all
	rerun-from
	resize-to
	skip-3dmodel
	sm-cluster
	smrf-scalar
	smrf-slope
	smrf-threshold
	smrf-window
	split
	split-overlap
	texturing-data-term
	texturing-keep-unseen-faces
	texturing-nadir-weight
	texturing-outlier-removal-type
	texturing-skip-global-seam-leveling
	texturing-skip-hole-filling
	texturing-skip-local-seam-leveling
	texturing-skip-visibility-test
	texturing-tone-mapping
	time
	use-3dmesh
	use-exif
	use-fixed-camera-params
	use-hybrid-bundle-adjustment
	use-opensfm-dense
	verbose
	version

	Ground Control Points
	Creating a GCP file using POSM GCPi
	Using GCP files
	How GCP files work

	Flying Tips
	Fly Higher
	Fly on Overcast Days
	Fly Between 10am and 2pm
	Fly at Different Elevations and Capture Multiple Angles
	Fly on Calm Days
	Increase Overlap
	Set Drone to Hover While Taking Images
	Check Camera Settings

	III Advanced Usages
	The Command Line
	Command Line Basics
	Using ODM
	Processed Files Owned By Root
	Add New Processing Nodes to WebODM
	Batch Geotagging of Images Using Exiftool
	Further Readings

	Docker Essentials
	Docker Basics
	Managing Containers
	Managing Images
	Managing Volumes
	Docker-Compose Basics
	Managing Disk Space
	Changing Entrypoint
	Assigning Names To Containers
	Jumping Into Existing Containers
	Making Changes Without Rebuilding Images

	Camera Calibration
	Option 1: Use an Existing Camera Model
	Option 2: Generate a Camera Model From a Calibration Target
	Taking Pictures of a Calibration Target
	Extracting a Camera Profile
	Manually Writing a cameras.json File
	Bonus: Checking Your LCP File by Manually Removing Geometric Distortion

	Processing Large Datasets
	Split-Merge Options
	Local Split-Merge
	Distributed Split-Merge
	Using Image Groups and GCPs
	Limitations

	The NodeODM API
	Launching a NodeODM Instance
	NodeODM Configuration
	Using the API with cURL
	Remove a Task
	API Specification

	Automated Processing With Python
	Getting Started
	Example 1: Hello NodeODM
	Example 2: Process Datasets
	Concluding Remarks
	API Reference

	Glossary
	About the Author

