DEF:NIENS

Understanding Images

What's new eCognition Developer 8?7

Working with Maps

New OBIA dimensions

DEEPER INSIGHTS
FASTER RESULTS
BETTER DECISIONS

www.earth.definiens.com

Imprint and Version

Document Version

Copyright © 2009 Definiens AG. All rights reserved.
Published by

Definiens AG
Trappentreustr. 1
D-80339 Miinchen
Germany

Phone +49-89-231180-0
Fax +49-89-231180-90

Web http://earth.definiens.com

Legal Notes

Definiens®, Definiens Cellenger® and Definiens Cognition Network Technology® are
registered trademarks of Definiens AG in Germany and other countries. Cognition
Network Technology™, Definiens eCognition®, Enterprise Image Intelligence™, and
Understanding Images™, are trademarks of Definiens AG in Germany and other
countries.

All other product names, company names, and brand names mentioned in this
document may be trademark properties of their respective holders.

Protected by patents US 7146380, US 7117131, US 6832002, US 6738513, US 6229920,
US 6091852, EP 0863485, WO 00/54176, WO 00/60497, WO 00/63788 WO 01/45033,
WO 01/71577, WO 01/75574, and WO 02/05198. Further patents pending.

Table of Contents

Working with Maps

Imprint and Version
Legal Notes

Table of Contents
Introduction to this Module

Lesson 1

1.1
1.2

Lesson 2

2.1
2.2

23

24

25

2.6

This Module has two Lessons: 0Symbols at the side of the document
Symbols at the side of the document

Introduction to Maps

About Maps
Application fields of Maps

Using Maps: Example Change Detection

N oo 1 Db DWW NN =

The Image Layers of the ‘main’ Map

Creating two independent Maps

2.2.1 Introduction to the algorithm ‘copy map’

2.2.2 The Process settings to create the Map for T1

223 Execute the first Process, display and explore the new created a
Map

2.24 The Process settings and execution to create the Map for T2

225 Evaluate both new a Maps

Classifying Vegetation on both Maps individually

2.3.1 The Process settings to classify Vegetation on MapT1
23.2 Execute and review the classification of MapT1

2.3.3 Execute Vegetation Classification for MapT2

234 Review theresult

Synchronizing content of Maps

2.4.1 Introduction to the algorithm ‘synchronize maps’

242 The Process settings to synchronize the content of MapT1

243 Execute the synchronization of MapT1 with main Map

244 Review theresult

245 The Process settings and execution to copy the existing Level in
the main Map

246 The Process settings to synchronize the content of MapT2

247 Execute the synchronization of MapT2 with main Map

248 Review the result of both synchronization steps

Applying the actual Change Detection

2.5.1 Main Map as Domain in the Parent Process

2.5.2 The Process settings to cookie-cut the outlines of LevelT1 in
Level_T2

253 Execute and review the result

254 The Change Detection classification

255 Review the Result

Summary

12
13
14

16

17
18
19
19

20

21
21
23
23

23
24

26
29
29

30
31
32
33

34

Introduction to Maps

Introduction

Information

-

Action!

7

Settings
Check

&

Rule Set
Check

7

Result
Check

Introduction to this Module

This Module gives you an introduction to a new function in eCognition Developer 8, the
so called Maps. The functionality is explained on an example of Change Detection.

Goal of this Module is to give you an introduction to this new feature, the different
algorithms you need to make use of it.

This Module has two Lessons:

Lesson 1 Introduction to Maps and Lesson 2 Using Maps: Example Change Detection.

Symbols at the side of the document

The symbols at the side of the document shall guide you through the exercises and help
you to identify whether to read something or an action is needed or whether the
screenshot is meant to be compared with settings in the software.

If the side is hachured and ‘Introduction’ is added, this indicates that a text is giving a
general introduction or methodology about the following chapter, method or exercise.

If the side is hachured and ‘Information’ is added, this indicates that a text is giving
information about the following exercise.

If this symbol is shown, you have to follow the numbered items in the text. If you just
want to work through the exercises without reading the theory part, follow only this
sign.

If this symbol is shown, compare the settings shown in the screenshot with the settings
in the according dialog box in the software.

If this symbol is shown check the screenshot of the Process Tree with the content of the
Process Tree in the software.

If this symbol is shown check the screenshot aside with the result in the software. It
should look similar.

What's new eCognition Developer 87 Introduction to Maps

Lesson 1 Introduction to Maps

This Lesson has the following chapters

= About Maps

= Application fields of Maps

In eCognition Developer 8, you have the possibility to work with so called 'Maps'. A Map Introduction

is a “Sub-Project” where you can process independently.

e Within one Project you can have several Maps.

e Maps are independent "Sub-Projects".

e The original scene is always the ‘main’ Map, all other, created Maps can have
individual names.

e You can define Image Layers and resolution for a new Map.

Introduction to Maps

introduction

introduction

1.1 About Maps

e You can create Maps directly when creating
the Project (Create Project dialog box or
Customized Import).

e You can create Maps using algor. 'copy

map'.
. . . “
e Process on individual Maps only
. . . . original scene
(new item in the Image Object Domain).
— —i—
Task specific i \:‘;vl’_ff%
segmentation in 2 y~g
different maps J_;:—JJ/OJ
Image Dbgect Doman
|image cbiect level =]
Parameter Value
Level Levell ﬂ
Class fiber none
Theeshold condition Mean pan < 150 J
Mep Mepvegeisin = |
=) From Parent o |
¢ You can exchange content between Maps | |
. . . L]
using algorithm 'synchronize maps'. .

Independant .
classification ° °%
approaches - -
e
Combined results .. (A8
®e

e You can delete Maps, if not needed
anymore.

1.2 Application fields of Maps

Backup of original image objects:

During Rule Set development there is now the possibility to copy a certain stage of your
processing in a Map and continuing on the main Map. After trying out a new
segmentation or classification you can then compare the changes to the copied Map

and also recover the original state by synchronizing the backup Maps content into the
main Map again.

Independent segmentation and classification for different tasks:
If different Image Object Hierarchies are needed, which are independently created, you
can do this in separate Maps. For example, in one Map you can segment using the

relevant image layers for Vegetation classification, in the other Map those relevant for
Water classification.

Improved performance using down sampling approach and Regions:
Another possibility in combination with Maps is that you can lower the resolution of a
Map to be created. Coarse analysis of a wide area can be done then much faster. Or

Maps from defined Regions only can be created, an exact subset will be then bases for
the extend of the new Map.

What's new eCognition Developer 87 Using Maps: Example Change Detection

Lesson 2 Using Maps: Example
Change Detection

This Lesson has the following chapters

The Image Layers of the ‘main’ Map

Creating two independent Maps

Classifying Vegetation on both Maps individually
Synchronizing content of Maps

Applying the actual Change Detection

Summary

One application field of Maps is the Change Detection. To set up a Change Detection introducton

using Maps, there is a main Map containing all image layers from both points of time,
then two independent Maps are created, with only the image layers of one point of
time. These are segmented and classified separately. In a last step, the actual Change
Detection is applied to the main map, which now contains the results from both Maps.

In this Lesson you will go through all 4 important steps and learn

e How to create two independent Maps, one representing only T1, the other T2.
e How to classify Vegetation on both Maps individually.

e How to synchronize the content of both Maps back to the ‘main’ Map.

e How to apply the actual Change Detection.

Original Scene

I 1. Create Maps
L]
L]

°® «% | [2. Process on Maps
L] : [] 34 p Process Tree El

[l = Change Detection with Maps

#-® 01_Create Maps

r- = D2_Classify Maps independent
- = 03_Synchronize both to main map

% #- = D4_Change Detection on main map
° 4. Classify Changes on

original scene

3. Synchronize Maps
content to original scene

4 » » Main

Figure 2: Left: schematic workflow of change detection using Maps; Right: overview over Rule Set
sections.

Using Maps: Example Change Detection

2.1 Thelmage Layers of the ‘main’ Map

"= =
Preparation

Action! 1. Start Definiens eCogniton Developer in ‘Rule Set’ mode.

2. Switch to predefined view setting number 4 ‘Develop rulesets’

Yiew Settings |'=Tl

% o B OEER &

3. Inthe main menu ‘File’ choose ‘Open Project’ or click on the ‘Open Project’ button
in the toolbar.

4. Open the project ‘Maps_ChangeDetection.dpr’ in the folder
J ’...\01_eCognitionDeveloper8_WhatsNew\03_Working_with_Maps’ at the
location where the training data is stored.
Result

= Developer - [Maps_ChangeDetection.dpr - Pixels] |__HE\&\
Check _ : - B
& File View Image Objects Analysis Lbrary Classification Process Tooks Export Window Help -
aeR OmEE & (RN L o @[aow ~|@ [man =]
[e Process Tree - X Class Hierarchy -
= Change Detection with Maps = ® classes
% = D1_Create Maps @ Mo change
= 02_Classify Maps independent ¢ Not Vegetation_T1
* 03_Synchronize both 1o main map) Not vegetation_T2
= 04_Change Detection on main map @ vegetation decrease
@ vegetation increase
@ vegetation_T1
@ vegetation_T2
« 4 » » " Groups [Inheritance
4« 4 » » " Main
Feature View
Image Object Infor mation e ~
Feature Valie [Brightness)
Scene features Variables 177 Max. diff.
th_water 107 L T1_blue
L/ T1_green d
15 T1nir
[T1_pan
L7 T _red
[T2 biue
7 72 green
L7 T2 it 2
2 LW « 1« v w Features { Clssification / ClssBvab | [| |+ [] <[]
(1004, 31) = (414215.40, 3712498.80) Zoom:S0% user defined channel miding Linear (1.00%) XY 1,004,003 Pixels (1001x1003) CIC)
Figure 3: Loaded Project containing Rule Set, nothing has been processed yet.
The loaded Project contains two sets of multispectral and panchromatic image layers
from a subset of a Quickbird scene. T1 is the multispectral and panchromatic layers from
March 2002 and T2 is from March 2004.
Information

Evaluate the loaded Image Layers

In the loaded Project, the multispectral layers of T1 are displayed. Check also the layers
of T1.

Tip:

ey, In the lower right corer of the Viewer, you see which Map is displayed currently. In our
example right now, it is the ‘main’ Map.

Action! 1. Click the ‘Edit Image Layer Mixing’ button in the ‘View’ toolbar or go to main
menu View>Image Layer Mixing....

What's new eCognition Developer 87 Using Maps: Example Change Detection

4

Settings
Check

Image Layer
T2 _blue
T2_green
T2red
Tom
T2_pan
T1_bhue
T1_green
T_red

T1_pan 5 ks M Cmain

Figure 4: The Image Layers of T1 are displayed.

2. Click on the up arrow in the lower right of the ‘Edit Image Layer’ dialog box, until i
the bullets are moved completely to the T2 multispectral layers. ﬁ

4

Settings
Check

Figure 5: The Image Layers of T2 are displayed.

Using Maps: Example Change Detection

2.2

Creating two independent Maps

This Chapter has the following sub-chapters

>
>
>
>

>

Introduction to the algorithm ‘copy map’

The Process settings to create the Map for T1

Execute the first Process, display and explore the new created a Map
The Process settings and execution to create the Map for T2

Evaluate both new a Maps

In the Process section ‘01_Create Maps' the two Processes to create the necessary Maps
for Vegetation classification of both points of time are stored.

2.2.1

Introduction to the algorithm ‘copy
map’

The most important functionalities of this algorithms are:

In the field ‘Source Region’ € it is defined whether you want to create a Map from
the full extend of the original scene or if a Region is the basis for the new Map.

In the field ‘Target Map Name’ @) the name of the new Map to be created is
defined.

If the Map to be created shall have a different resolution, this in the field ‘Scale’ €).

In the field Image Layers’ €) the Image layers needed for the new Map are
defined. If nothing is set, all Image layers of the source Map are copied to the new
Map. In the field ‘Thematic Layers’ @ the thematic layers for the new Map are
defined.

If 'Yes' is set in the field ‘Copy Image Object Hierarchy’ @) the existing Image
Object Levels are copied in the new Map. E.g. if you want to have a back up map,
you would use this option.

Edit Process

Image Dbject Doman

Use varable a: scale

ZX

Mame Algonthm Description

- B E h =
7 hdcat b Copies the selected map with the specified paramelers
[copy map to MapT1' Algorithm parameters
Algorhm Parameter Yalue

Source Region none -

icopy mag) - v
[— &) Taiget Map Name MapT1

No

F eScale Use cunent scene scale
jznctts =1 [T Clockvise ratation angle 0
Resampling Fast
Parameter Value
Theeshold condit Image Layers [T1_pan, T1_nir, T1_red.
= e e (5 Thematic Layers [
2 ool) Copy Image Object Hisrarchy Yes
Presstve curtent object type Yes
Visthiity Flag Yes :J
Loops & Cycles
Mumbes of cycles |1 ;J
Execute Ok Cancel Help

Figure 6: Process settings of algorithm ‘copy map’.

10

What's new eCognition Developer 87 Using Maps: Example Change Detection

2.2.2 The Process settings to create the Map
forT1

1. Expand the Process section ‘01_Create Maps'. ’é‘i :
2. Double-click on the first Child Process ‘copy map to 'MapT1" to open it. ﬁ

o
Process Tree J

= = Change Detection with Maps

== 01 Create Maps Rule Set
—ﬁ copy map to 'MapT1'
&5 copy map to MapT2 Check

+ = 02_Classify Maps independent
+ = 03_Synchronize both to main map
+ = 04_Change Detection on main map

« <« » » “Main/

Figure 7: Process settings to create the MapT2.

Edit Process

Marme Algarithrm D escription .
¥ Autormatic B Copies the selected map with the specified parameters. Settlngs
Check
|°°|35' map to 'apT 1’ Algorithm parameters
Algorithm Pararneter Yalue
ﬂ Source Region none -
Target Map Mamne MapT1
Image Object Domain Uze wariable a2 scale Mo
Scale Use curment scene scals
swecute ﬂ Clockwize rotation angle 0
Pararmeter Walue Fiesampling Fast -
— Image Layers [T1_pan, T1_nir, T1_red. ...
Threshold condition .
M From P ' Thematic Layers [1
aw om Farsn Copy Image Object Hierarchy e
Prezerve curent object type ez
Yigibility Flag e ﬂ
Loops & Cycles
Mumber of cycles |1 ﬂ

Execute | Ok Cancel Help

Figure 8: Process Tree with Process to create the MapT2.

11

Using Maps: Example Change Detection

7

Settings
Check

=3

Action!

=3

Action!

e The algorithm ‘copy map’ from the algorithm section ‘Map Operations’ is chosen.

Image Object Domain

e IntheImage Object Domain the default settings are kept. No threshold must be set,
no specific Map, as there is only one existing.

Algorithm Parameters

e Source Region: ‘none’ is kept, because no Region is existing, which could be the
basis for the Map. The full extent of the loaded subset shall be copied in the new
Map

e Inthefield ‘Target Map Name' ‘MapT1' is defined. To insert a name for the new
Map, simply type itin.

e Inthefield ‘Scale’, the default setting ‘Use current scene scale’ is kept, as no
change in resolution for Change Detection is needed.

¢ Inthefield ‘Image Layers’ only the layers from T1 are chosen. The new Map will
then contain only these layers.

3. Clickonthe..." next to the lmage Layers’ field. The ‘Select Image Layers' dialog
box opens.

Select image layers P

T2_blue
T2 green
T2 red

Deselect Al | i3 Cancel |

Figure 9: Only the T1 Layers are selected.

Tip:

To select multiple Layers, keep the key pressed and click on the layers you want
to choose.

4. Click on the ‘Cancel’ button to close the window.

o All other fields are also kept with their default settings.

2.2.3 Execute the first Process, display and
explore the new created a Map

Execute the Process

1. Close the ‘Edit Process’ window.

12

What's new eCognition Developer 87 Using Maps: Example Change Detection

2. Execute the Process, by either right-clicking on it and select ‘Execute’ from the
context menu or by selecting itand pressing on your keyboard.

Display the new created Map

3. Todisplay a Map, use the drop-down list in the ‘View Navigate’ toolbar, right
beside the ‘Delete Level’ button. Select ‘MapT1'.

CEX 7

x
% 1B iaElren =TT 148,010 0000 (F] Result
Image Object Infor MapT1 % Class Hierarchy - ¥ ec
Featurs 7 — = = classes
?cenle features ?:iahle: | | @ No change ‘
MapT1l [
>
Figure 10: In the Viewer, in the lower right corner, now ‘MapT1' is displayed.
Check the image layers
1. Click the ‘Edit Image Layer Mixing’ button in the ‘View’ toolbar or go to main e
menu View>Image Layer Mixing....
Image Laper R |G |B
T1_blus 5] J
T1_green o .
Tred s Settings
T1_nir o Check
T1_pan
Figure 11:In the new Map ‘MapT1’ contains only the layers of T1, as specified in the Process ‘copy
map’.
2.2.4 The Process settings and execution to
create the Map for T2
Explore the settings of the second Process
1. Double-click on the second Child Process ‘copy map to 'MapT2' to view the i
settings.
Action!

13

Using Maps: Example Change Detection

4

Rule Set
Check

4

Settings
Check

Action!

Information

Action!

Process Tree 3]

= = Change Detection with Maps
-~ = D1_Create Maps
copy map to 'MapT1'
& copy map to 'MapT2'
+ = 02_Classify Maps independent
+ = 03_Synchronize both to main map
+ = (04_Change Detection on main map

« 4 » » ‘\Main/

Figure 12: Process Tree with Process to create the MapT2.

Edit Process @E}

Name Algorithm Description
A onaie B Copies the selected map with the specified parameters.
{copy map to 'MapT 2 Algorithm parameters
Algorithm Parameter Yalue
lcopy map) = Iﬁ.umﬁa.ﬂ:plon none ’S
J Target Map Name MapT2
Image Obiject Domain Use variable as scale No
Scale Use curent scene scale
lexecute L] Clockwise rotation angle 0
Gl R I :::I:a: qualn:m ﬁ_szl an, T2_nir, T2_red I
Threshold condition S 28 =B, oo e e

Thematic Layers [

M From Parent . .
ks fomt S Copy Image Object Hierarchy Yes
Preserve cunrent object type Yes
Visibility Flag Yes ﬂ
Loops & Cycles
Number of cycles |1 L]

Execute I Ok Cancel Help

Figure 13: Process settings to create the MapT2.

e Asforthe Process before, the default settings are kept for the Image Object
Domain.

¢ Indifference to the Process before, here of course the ‘Target Map Name’ is
‘MapT2'.

¢ Inthefield Image Layers’ only the layers of T2 are chosen.

Execute the Process

2. Execute the Process, by either right-clicking on it and select ‘Execute’ from the
context menu or by selecting it and pressing on your keyboard.

2.2.5 Evaluate both new a Maps

Open and link a second Viewer to display both Maps

First open a second Viewer, then display T1 in the one, T2 in the other Viewer. Link both
Viewers with ‘Side by Side’ mode.

1. Toopen a second Viewer, go to main menu Window and select either ‘Split
Horizontally’ or ‘Split Vertically'.

14

What's new eCognition Developer 87 Using Maps: Example Change Detection

2. Clickin the left Viewer window to make it active and select MapT1 from the drop-
down list in the ‘View Navigate’ Toolbar.

= |- . -
MapT1 MapT2

3. Clickin the right Viewer window to make it active and select MapT2 from the
drop-down list in the ‘View Navigate’ Toolbar.

4. Go again to the main menu ‘Windows' and select ‘Side by side View'.

Explore both Maps

5. Zoom in the Maps and compare the differences in both Maps. Especially the
Vegetation is quite different in the two Maps.

b 4 MapT1

Figure 14: Two Maps are create: MapT1 and MapT2.

15

Using Maps: Example Change Detection

2.3 Classifying Vegetation on both
Maps individually

This Chapter has the following sub-chapters

The Process settings to classify Vegetation on MapT1
Execute and review the classification of MapT1

Execute Vegetation Classification for MapT2

vy vV

e Review the result

Now that you have two separate Maps, you can segment and classify on both
individually. This means you can create two totally independent Image Object
Hierarchies within one Project, separated in two Maps.

Which Process is applied to which Map is controlled by the Image Object Domain,
where Maps are a new item in eCognition 8.

If you need to apply several Processes to a Map, you can define the Map in the Parent
Process as Domain and use the setting ‘From Parent’ in the subsequent Child
Processes.

Process Tree

= = Change Detection with Maps
+ = 01_Create Maps
- = 02_Classify Maps independent
EI Classify Vegetation on Map T1 |

2= 30 [shape:0.1 compct.:0.5] creati
YL with NDVI_T1 > 0.3 at Level_T1
e Vegetation_T1 at Level_T1: mert

Parent Process

|D|assily ‘Vegetation onMap T1

Algorithm
ﬂ

Image Object Domain
|exe-cute ﬂ

Parameter Value

—*1 Map MapT1 I

Child Process

Algorithm

]

Image Object Domain

|mage object level =]
Parameter Value

Level Level_T1 ~
Class filter none

Thieshold condiion NDWI_T13> 0.3

Second condition

—>]_Map From Parent |
Reaion From Parent LI

Figure 15: In the domain of the Parent Process MapT1 is specified. All Child Processes refer to this
domain.

16

What's new eCognition Developer 87 Using Maps: Example Change Detection

2.3.1 The Process settings to classify
Vegetation on MapT1

1. Expand the Process section ‘02_Classify Maps independent’ and also ‘Classify i
Vegetation on Map T1'.

Action!
Explore the Parent Process

2. Double-click on the Process ‘Classify Vegetation on Map T1' to open it.

= = Change Detection with Maps V‘i
= D01_Create Maps
- = (] Sl

Settings

30 [shape:0.1 compet. :0.5] creating Level_T1' Check
WL with NOVI_T1 > 0.3 at Level_T1: Vegetation_T1
e Vegetation_T1 at Level_T1: merge region
w unclassified at Level_T1: merge region
SL unclassified at Level_T1: Not Vegetation_T1

+ = Classify Vegetation on Map T2
= 03_Synchronize both to main map

= 04_Change Detection on main map

4 » B \Main

J Edit Process

Rule Set Name
Check [~ Automatic B

[Classiy\fege!dim onMap T1

Algorithm

|exectﬂe child proceszes ﬂ

Image Object Domain

|execute ~|

Parameter Value

Paramenr
| EE S e -

Loops & Cycles
MNumber of cycles 11 ﬂ

Figure 16: In the domain of the Parent Process MapT1 is specified. All Child Processes refer to this
domain.

e Asalgorithm ‘execute child processes’ is chosen.

¢ IntheImage Object Domain of the Parent Process, ‘MapT1’ is selected from the
drop-down list.

3. Click on the ‘Cancel’ button to close the window. '*i :

Explore Image Object Domain of Child Processes Actionl

1. Double-click on the first Child Process ‘30 [shape:0.1 compct.:0.5] creating
'Level_T1" to open it.

e Asalgorithm ‘multiresolution segmentation’ is chosen.

e IntheImage Object Domain of the Child Process, ‘From Parent’ is selected from the
drop-down menu.

2. Click on the ‘Cancel’ button to close the window.

17

Using Maps: Example Change Detection

3. Double-click on the second Child Process ‘with NDVI_T1 > 0.3 at Level _T1:
Vegetation_T1' to open it.

4 Edit Process Edit Process

Settings Mame MName
]
Check v Automatic B1 [Autamatic B
|30 [shape: 0.1 compet.:0.5] creating ‘Level _T1' |with MOWI_T13> 0.3 at Level T1: Yegetation _T1
Algarithm Algorithm
|multiresolution segmentation j |assign class j
Image Object Domain Image Objzct Domain
|piHE| level ﬂ |image ohject level j
Farametear Yalue Paratmeter Value
Map Frarm Parent - Level Lewel_T1 -
Threshald condition Clazs filter hane
Threzhald condition MOWI_T1 > 03
Second condition
Map Frorm Parent -
Rieaion Fram Parent ﬂ

Figure 17: Both Processes point in their Image Object Domain to whatever Map is specified in the
Parent Process. Here MapT2 is defined the Parent Process as domain.

2.3.2 Execute and review the classification of
MapT1

Right-click on the Process ‘Classify Vegetation on Map T1' by either right-clicking

on it and select ‘Execute’ from the context menu or by selecting it and pressing
Action! on your keyboard.

ﬁf?
g

2. Activate the Viewer with MapT1.

3. Switch on the Classification View with transparency on, additionally you can
switch on the new functionality ‘Transparent/non-transparent outlined object'.

EE

Figure 18: New functionality: ‘Transparent/non-transparent outlined object'.

Review the classified Map

v Because ‘MapT1' is set in the Domain of the Parent Process, all subsequent Child
Processes were applied only to MapT1. Map T2 was not processed, no Image Object

Result Level was created, no classification took place.

Check ;

Process Tree x

= = Change Detection with Maps
#- = 01_Create Maps
= 02_Classify Maps independent
= Classify Vegetation on Map T1
3= 30 [shape:0.1 compct, :0.5] creating 'Level_
YL with MDVI_T1 > 03 at Lavel_T1: Vegstatid
~w Wegetation_T1 at Level_T1: merge region
~r unclassified at Level_T1: merge region
WL unclassified at Level_T1: Mot Wegetation_T.
#- = Classify Vegetation on Map T2
= 03_Synchronize both to main map
#- = 04_Change Detection on main map

< | =
EVEPM « « » » ' Main

What's new eCognition Developer 87 Using Maps: Example Change Detection

Figure 19: MapTT1 is classified, MapT2 not.

2.3.3 Execute Vegetation Classification for
MapT2

To classify Vegetation in MapT2, the same approach is applied, in the Parent Process
‘Classify Vegetation on Map T2’ the Domain is set to Map2, all subsequent Child
Processes are referring to this Domain.

Information

1. Right-click on the Process ‘Classify Vegetation on Map T2' by either right-clicking
on it and select ‘Execute’ from the context menu or by selecting it and pressing

on your keyboard.
Action!

Process Tree @ ﬁf?

= = Change Detection with Maps
4 = 01_Create Maps
= D2_Classify Maps independent Rule Set
. 3 Check

+ - 34 A OIS N00 00 BIS0)
#= 30 [shape:0.1 compct.:0.5] creating 'Level_T2'
ML with NOVI_T2 > 0.3 at Level_T2: Vegetation_T2
ww Vegetation_T2 at Level_T2: merge region
= unclassified at Level_T2: merge region
%L unclassified at Level_T2: Not Vegetation_T2

+ ®» 03_Synchronize both to main map

+ = 04_Change Detection on main map

H a4 rn \.Mlin_/'

Figure 20: Process Tree with section for classifying Vegetation on MapT2.

2.3.4 Review the result

2. Activate the Viewer with MapT2.

3. Switch on the Classification View and transparency on, additionally you can
switch on the new functionality ‘Transparent/non-transparent outlined object'.

Both Image Object Levels of both Maps were created independently and are different. <

Process Tree - X

(= = Change Detection with Maps Resu“
- 01_Create Maps
- = 02_Classify Maps independent CheCk
» Clagsify Wegetation on Map T1
= Classify Yegetation on Map T2

18]

=== yegetation_T2 at Level_T2: merge regid
e nclassified at Level _T2: merge region
[¥, unclassified at Level_T2: Not ‘egetation
= 03_Synchronize both to main map
[#- = 04_Change Detection on main map

< ?
T« 4 b o» \Main

= MapT1

Figure 21: In the left Viewer result for MapT1 is shown, in the right Viewer the result for MapT2.

19

Using Maps: Example Change Detection

Introduction

2.4 Synchronizing content of Maps

This Chapter has the following sub-chapters

>
>
>
>
>
>
>
>

Introduction to the algorithm ‘synchronize maps’

The Process settings to synchronize the content of MapT1

Execute the synchronization of MapT1 with main Map

Review the result

The Process settings and execution to copy the existing Level in the main Map
The Process settings to synchronize the content of MapT2

Execute the synchronization of MapT2 with main Map

Review the result of both synchronization steps

After both Maps have been classified, now the results of both are synchronized back to
the main Map. The two Levels with their classification of Vegetation are then in a later
step basis for Change Detection classification.

To synchronize multiple Levels (LevelT1 and LevelT2) in one (main) Map, it must be
defined to which place of the hierarchy the Levels it should be synchronized.

In the current example,

N\
N

the LevelT1 from Map T1 is copied in an empty ‘main’ map, no place in the
hierarchy must be defined for this step.

To avoid that the Level from MapT2 is overwriting the Level of MapT1 in the next
synchronization step, the existing LevelT1 is copied and named LevelT2.

LevelT2 in the main Map is then the Level, to where the second synchronization
process points to.

™~ ™~ /A -
1. Synchronize T1 N\ ,f/2. Create LevelT2 in main \ /3. Synchronize T2 on LevelT2\
® MapT1 MapT2, ® MapT1 MapT2 ® NapT MapT2
e® e® °®
°® .o.: ® .o.: L
et }

) main Map \

SN N

Figure 22: Three steps to synchronize content of two Maps in the main Map.

20

What's new eCognition Developer 87 Using Maps: Example Change Detection

2.4.1 Introduction to the algorithm
‘synchronize maps’

To copy the content from one Map to another the algorithm ‘synchronize maps’ is used. Introduction
This algorithm is part of the ‘Maps Operations’ section in the algorithm list.
With this algorithm:
e It can be defined in the Image Object Domain €), from which Map and Level the
content shall be copied.
e Itcan be defined in the Algorithm Parameters @) to which Map and Level the
content should be added.
e It can be defined whether the synchronization is restricted to specific Objects of a
class €.
Edit Process @@
Name Algorithm Description
A B? Copy image objects from one map lo another.
lon MapT1 at Level_T1: synchrorize map 'main' Algarithm paramelers
Algorithm Pararmeter Value
I'— j Target Map Name main 9
Region rone
Image Objsct Domain lC-Ieve'l'I Level T1
- - ass filler none
lmage object level j Threshold condition 9
Eararnatar Vale Clackwise rotation éngle 0
Preserve current object type Yes
Level Level_T1 “ - -
j Syrchronize complete hierarchy — Yes
Class fiter none
Threshold condition
Map MapT1 (
R aminn Erern B aramt i |
Loops & Cycles
Number of cycles [1 ~|
Execute | Ok Cancel Help
Figure 23: Process settings of algorithm ‘synchronize maps'.
2.4.2 The Process settings to synchronize the
content of MapT1
1. Expand the Process section ‘03_Synchronize both to main map'. ’é‘i :
2. Double-click on the first Child Process ‘on MapT1 at Level_T1: synchronize map ﬁ
'main’ to openiit. Action!

21

Using Maps: Example Change Detection

M

-~ = Change Detection with Maps
+- = 01_Create Maps
+- = 02_Classify Maps independent
-~ »_03_Synchronize both to main map

| € on MapT1 at Level_T1: synchronize map 'main’ |
XX on main at Level_T1: copy creating 'Level_T2' above
& on MapT2 at Level_T2: synchronize map 'main’

= 04_Change Detection on main map

Rule Set
Check

¥

“ 4 »\Main/"

Figure 24: Process Tree with Process to synchronize content of MapT2 to main Map.

7 Edit Process @

Settings Name Algorithm Description
Check ¥ Automatic B Copy image objects from one map to another.
fonMapT1 at Level_T1: synchronize map ‘main' Algorithm parameters
Algorithm Parameter Yalue
li ﬂ Target Map Name main
Region none
Image Object Domain Level Level T1
- - Class filter none
Elmage object level L] Threshold condition
PoIeiET value Clockwise rotation a_ngle 0
S— Preserve cunent abject type Yes
Level Level _T1 - = :
Synchronize complete hietarchy Yes
Class filter none
Threshald condition -
Map MapT1 |
Ranion Fram Parant = |
Loops & Cycles
Number of cycles |1 Ll

Execute I Ok Cancel Help

Figure 25: Process settings to synchronize content of MapT1 to main Map.

Image Object Domain
The Image Object Domain here defines the source of synchronization.
e Aslevel‘Level_T1'is chosen.

e AsMap ‘MapT1'is chosen.

Algorithm Parameters

The Algorithm Parameters here define the target of synchronization.

22

What's new eCognition Developer 87 Using Maps: Example Change Detection
In the drop-down list of the field ‘Target Map Name’ the main Map is chosen.
No Region is defined in the field ‘Region’.

In the field ‘Level’ the name of the new Level in main Map is defined, here
‘Level_T1'. You can either type in a new name or pick one from the drop-down list.

2.4.3 Execute the synchronization of MapT1

2

with main Map

Execute the Process ‘'on MapT1 at Level_T1: synchronize map 'main’ by either i
right-clicking on it and select ‘Execute’ from the context menu or by selecting it and

pressing on your keyboard.

Display in one Viewer MapT1 and in one Viewer main Map.

Action!

4.4 Review the result

7

Result
Check

Figure 26: The content of MapT1 is now also available in main Map.

-

/

.

2

1.

. . N
Figure 27: The second step of the synchronization Process is to create a Level in the main Map.

- ™
1. Synchronize T1 \ /2. Create LevelT2 in main

main Map

AN

4.5 The Process settings and execution to

copy the existing Level in the main Map

Double-click on the second Child Process ‘'on main at Level_T1: copy creating P
'Level_T2'above' to open it i

Action!

23

Using Maps: Example Change Detection

4

Settings
Check

Action!

Action!

Edit Process

Name Algorithm Description
] | l i I 1
I [Auomate B ;?set::'l; ﬁg? of the selected image objects domain above or below the
Jonmain at Level_T1: copy creating Level_T2' above Algorithm parameters
Algorithm Parameter Value
|cop_l,J image object level ﬂ Level Name Level T2
Copy Level above
Image Object Domain
|irnage object level L]
Parameter Value
Level Level T1 a
Class filter none
T bold o
| CE -]
— vz Ld
Loops & Cycles
Number of cycles [1 Ll
Execute I Ok Cancel Help

2JX

Figure 28: Process settings to copy ‘Level_T1’ above. In the Image Object Domain, it is specified
that this shall executed only in the main Map.

Image Object Domain

e Inthefield ‘Level’ it is specified that ‘Level_T1’ shall be copied.

e Inthefield ‘Map’ it is defined that the Process is be executed in the main Map, not
in any of the others.

2. Execute the Process.

-z 1. Synchronize T1

\

/ 2. Create LevelT2 in main o

3. Synchronize T2 on LeveITE\

8 MapT1 MapT2 L REAT MapT2 o. MapT MapT2
L] °
° (] °
o % (] Y e L’
.. .0 .O - .:
®e
[T e
/ LeveM®d
e ®
[
® %*
®e
®e main Map
main Map main Map /
N 4 N g

Figure 29: The second step of the synchronization Process is to create a Level in the main Map.

An Level_T2 ,identical with Level_T1, is now created. This new Level_T2 will be basis for
the next synchronization step to bring the content of the MapT2 to the main Map.

2.4.6 The Process settings to synchronize the
content of MapT2

1. Double-click on the third Child Process ‘on MapT1 at Level_T1: synchronize map
'main’ to open it.

24

What's new eCognition Developer 87 Using Maps: Example Change Detection

Process Tree 3]

= = Change Detection with Maps 4
¥ = 01_Create Maps
+# = 02_Classify Maps independent Rule Set
- = 03_Synchronize both to main map Check

& on MapT1 at Level_T1: synchronize map 'main'

ove
on MapT2 at Level_T2: synchronize map 'main’
+ = 04_Change Detection on main map

“« <« » » “Main/
;

Figure 30: Process Tree with Process to synchronize content of ‘MapT2’ to main Map.

Edit Process ?X v

Hame Algerithm Description
 Automat B Copy image obiects from one map to another, Settings
. . Check
|m MapT2 at Level T2 synchronize map 'main’ Algorithm parameters
Algorithm Parameter Value
[m :J Targlei Map Name mamn
Region none
Image Dbject Domain Level . Level_T2
Class flter none
|'mgB oojoct level ;I Threshold condition
Clockwise ratation angle 0
far:meter I_J:LIET > Preserve current object type Yes
O “ = Synchionize complete hierarchy Mo
Class filker none
Threshald condition -
Map MapT2 =
Barnm Errvn Barast
Loops & Cycles
Number of cycles [1 LJ

[Execwe | ok | Cancd | Hep |

Figure 31: Process settings to synchronize content of MapT2 to main Map.

Image Object Domain
The Image Object Domain here defines the source of synchronization.
e Aslevel ‘Level_T2'is chosen.

e AsMap ‘MapT2'is chosen.

Algorithm Parameters

The Algorithm Parameters here define the target of synchronization.

e Inthe drop-down list of the field ‘Target Map Name’ the main Map is chosen.
e No Region is defined in the field ‘Region’.

e Inthe field ‘Level’ the name of the new Level in main Map is defined, here
‘Level_T2'. Here the Level has to be picked one from the drop-down list, as it exists
already in the main Map.

2. Close the Process by clicking on ‘Cancel’. Fre

Action!

25

Using Maps: Example Change Detection

2.4.7 Execute the synchronization of MapT2
with main Map

1. Execute the Process ‘on MapT2 at Level_T2: synchronize map 'main"” by either
right-clicking on it and select ‘Execute’ from the context menu or by selecting it and
pressing| F5 on your keyboard.

2.4.8 Review the result of both
synchronization steps

2. Open 4 Viewers by selecting additionally i.e. ‘Split Horizontally’ from the main menu
‘Window'.

3. Display in the upper left Viewer the main map and Level_T1, in the upper right
main map and Level_T2.
v Display in the lower left Viewer the MapT1, in the lower right MapT2.

Result
Check

Level _T1 main Level_T2 main

| Level T1 MapT1l

Figure 32: Upper left: Level_T1 in the main Map; Upper right: Level_T2 in the main Map; Lower left:
Level_T1 in the MapT1; Lower right: Level_T1 in the MapT1.

// 1. Synchronize T1 \\ /2. Create LevelT2 in main ™ f/& Synchronize T2 oh Le\reITE\‘-
® MapT1i MapT2
. °
° '.':
e mein Map
\ I\ main Map \
AN N N

Figure 33: All three steps to synchronize are executed.

26

27

What's new eCognition Developer 87 Using Maps: Example Change Detection

Using Maps: Example Change Detection

28

What's new eCognition Developer 87 Using Maps: Example Change Detection

2.5 Applying the actual Change
Detection

This Chapter has the following sub-chapters

Main Map as Domain in the Parent Process
The Process settings to cookie-cut the outlines of Level_T1 in Level T2
Execute and review the result

The Change Detection classification

T P R A

Review the Result

Now that in the main Map both analysis results from T1 and T2 are available, the actual Information

Change detection can be applied.

The main Map as domain is set in the Parent Process, similar as in the section to classify
the Vegetation in the individual Maps.

Before the actual Change Detection classification is applied the Image Object Hierarchy
must be prepared.

2.5.1 Main Map as Domain in the Parent
Process

The Processes for detecting the changes are executed in the main Map. Therefore the Information
same approach as for the analysis of the individual Maps is chosen. In the Parent Process
the main Map is set as domain and all subsequent Child Processes are pointing to this
Parent Process Domain.

= = Change Detection with Maps
* 01_Create Maps
= 02_Classify Maps independent
+ = 03 Synchronize both to main map

| 04_Change Detection on main mag|
E £% at Level _T2: corwert to sub-objects

XT on man at Level_T2: copy creating ‘Level_Change' shove
My at Level_Change: remove classification
L at Level_Change: No change, Vegetation decresse, Vegetation increase

H 4 B ' Main

Figure 34: The Child Processes get the information to process only on the main Map from the
Parent Process.

29

Using Maps: Example Change Detection

[nformation

Action!

4

Rule Set
Check

4

Settings
Check

2.5.2 The Process settings to cookie-cut the
outlines of Level_T1 in Level_T2

The Objects of a Change Detection Level must represent both, the outlines of the
Objects of ‘Level_T1’ and ‘Level_T2’. Therefore the algorithm ‘convert to sub-objects’
is applied to cookie-cut the outlines of ‘Level_T1’in ‘Level_T2' without any effect on
the classification. Then ‘Level_T2' is copied above, this Level is named ‘Level_Change'.

(before oy
[oH He o}fe | Level T2
el ol He of H o elfeelfe oife] Level T1

! /

after A
A 4 A A A A A

I Ir 1 <] Level T2

[e o{He Lol H He o oHfe oif] Lewel T1

J

Figure 35: First the outlines of ‘Level _T2' are different from ‘Level_T1’, after executing the Process,
the outlines are cut into the upper Level.

1. Expand the Process section ‘04_Change Detection on main map'.

2. Double-click on the first Child Process ‘at Level_T2: convert to sub-objects’ to
open it.

Process Tree 3]

=/ = Change Detection with Maps
+ = 01_Create Maps
+ = 02_Classify Maps independent
+ = 03_Synchronize both to main map
-} =_04_Change Detection on main map
+% at Level_T2: convert to sub-objects
A% on main at Tevel_T2: copy creating Level_Change' above
My at Level_Change: remove classification
"L at Level_Change: No change, Vegetation decrease, Vegetation increase

“@ < » » \Main/

Figure 36: Process Tree with Process cookie-cut the outlines from ‘Level_T'1 in ‘Level _T2'.

Edit Process

Mame Algorithm D escription
W Automatic E Split all image objects of the image object domain inta their subobjects.

|at Lewvel T2 conwvert to sub-objects Algarithm parameters

Algorithm Parameter Walue

Kl

Irmage Object Domain

image object level ﬂ

Pararmeter alue

Level Level T2 -

Class filker none

Threzhald condition

Map From Parent

Baninn Fromn Parant ﬂ
Loops & Cypcles

Murnber of cycles 4 ﬂ

Execute | Ok Cancel Help

Figure 37: Process settings to cookie-cut the outlines from ‘Level_T1"in ‘Level _T2'.

30

What's new eCognition Developer 87 Using Maps: Example Change Detection

Image Object Information
e Inthe Image Object Information of this algorithm it is defined which Level is the

one to be cut. Here in this case it is the upper ‘Level _T2'.
Automatically the outlines of the Level below(here ‘Level_T1’) are cut into it.

2.5.3 Execute and review the result

3. Execute the Process. %

4

Result
Check

Figure 38: The outlines of the underlying Level are now also cut in the upper Level.

After executing the ‘convert to sub-objects’ Process, the ‘Level_T2’ represents also the
outlines of ‘Level_T1’. Now the Object Hierarchy is ready to be copied in an extra Level
to classify the changes.

31

Using Maps: Example Change Detection

[nformation

g
A

I

Action!

2.5.4 The Change Detection classification

The rules for Change Detection are stored in the Class Description of the classes, the
Class-Related Feature ‘Existence of sub-objects’ is used to describe the three different
change classes.

= o+ | Level T2

= *ff* | Level Change)
- s
\ = oife | Lewel_T1

/

Figure 39: For the classification of the Changes, the feature ‘Existence of sub-objects’ is used.

e Vegetation increase:

-~ » Contained
- and [min]
=== Exiztence of sub objects Yegetation_T1 [2]1=1
=== Exiztence of sub objects Yegetation_TZ2 [11=0
*u, Inherited

e Vegetation decrease:

- # Contained
- and [min]
==+ Existence of sub objects Yegetation_T1 [2)=0
==+ Exiztence of sub objects Yegetation_T2 [1] =1
4, Inherited

e Nochange:

—|-- & Contained
= and [min]
= Existence of zub objects Yegetation_T1 [2] =1
== Existence of zub objects Yegetation_T2 [1] =1
*4, Inherited

Preparation
1. Execute the Process ‘on main at Level_T2: copy creating 'Level_Change' above’.

2. Execute the Process ‘at ‘Level_Change: remove classification’ to have an
unclassified ‘Level_Change’'.

Execute the Change Detection Process

3. Execute the classification Process ‘at Level_Change: No change, Vegetation
decrease, Vegetation increase’.

32

What's new eCognition Developer 87 Using Maps: Example Change Detection

2.5.5 Review the Result

The classes Vegetation decrease, No change, Vegetation increase are classified. s

Result
Check

Legend

Active class

(@ Vegetation increase
@ Vegetation decrease
No change

Figure 40: Classification view of the final Change Detection Level in the main Map.

33

Using Maps: Example Change Detection

2.6 Summary

Create two independent Maps

Two Maps were created using the algorithm ‘copy map’. One Map contains only Image
Layers of T1, the other only image layers of T2.

MapT2

Figure 41: Two Maps are create: MApT1 and MapT2.

Classify Vegetation in both Maps individually

In the domain of the Parent Process it is defined that the subsequent Child Processes
are applled onIy to the speC|f|ed Map.

“ Process Tree X

= Change Detection with Maps
+- = 01_Create Maps
= 02_Classify Maps independent
#- = Classify Vegetation on Map T1
= = Classify Yegetation on Map T2
25 20 [shape:0.1 carmpct. 0.5] creating ‘Lev
ML with NDVI_T2 » 0.3 at Level_T2: Yeget|
e Vegetation_T2 at Level_T2: merge reqid
~= unclassified at Level_T2: merge region
ML unclassified at Lewel_T2: Mot Yegetation,
+- » 03_Synchronize both to main map
#- = 04_Change Detection on main map

< | »

| © 4 4 » w4y Main
Figure 42 In the left Viewer result for MapT1 is shown, in the right Viewer the result for MapT2.
Both Image Object Levels are independently segmented and classified.

34

What's new eCognition Developer 87 Using Maps: Example Change Detection

Synchronize the content of both Maps

In tree steps the synchronization is applied. The content of the first Map is copied to the
main map using the algorithm ‘synchronize maps’, then a Level is copied in the main
Map, as a third step the content of the second Map is copied to the new created Level in

the main Map.
4 1. Synchronize T1 "\ /" 2. Create LevelT2 in main \\ /3. Synchronize T2 on LevelT2",
MapT2| ® MapT1 I‘.n’lapTI ® MapT1 MapT2
°® e®
L]
e o ® P ..': ® -.‘:
®e
Levelr1
P L J
° e
®e main Map
\ /.‘ main Map /’

~— - ~—

Figure 43: Schematic workflow to synchronize Maps.

Level T1 ET] Level_T2 main

Level T1 MapT1 Level T2 MapT2

Figure 44: Upper left: Level_T1 in the main Map; Upper right: Level_T2 in the main Map; Lower left:
Level_T1 in the MapT1; Lower right: Level_T1 in the MapT1

35

Using Maps: Example Change Detection

Apply the actual Change detection

The actual Change Detection is applied in the main Map. The Object Hierarchy has to be
equalized for all Levels. The Class-Related Feature ‘Existence of sub-objects’ is used to
identify changes.

~f+ 4+ 4= | Level Change

[_eife of ofe offe offe | Level T2

sifs ofo offs ofs | Level T1

Figure 45: For the classification of the Changes, the feature ‘Existence of sub-objects’ is used.

Legend

Active class
OV egetation increase
@ Veqetation decrease

Figure 46: Classification view of the final Change Detection Level in the main Map.

36

	Introduction to this Module
	Introduction to Maps
	About Maps
	Application fields of Maps

	Using Maps: Example Change Detection
	The Image Layers of the ‘main’ Map
	Creating two independent Maps
	Introduction to the algorithm ‘copy map’
	The Process settings to create the Map for T1
	Execute the first Process, display and explore the new creat
	The Process settings and execution to create the Map for T2
	Evaluate both new a Maps

	Classifying Vegetation on both Maps individually
	The Process settings to classify Vegetation on MapT1
	Execute and review the classification of MapT1
	Execute Vegetation Classification for MapT2
	Review the result

	Synchronizing content of Maps
	Introduction to the algorithm ‘synchronize maps’
	The Process settings to synchronize the content of MapT1
	Execute the synchronization of MapT1 with main Map
	Review the result
	The Process settings and execution to copy the existing Leve
	The Process settings to synchronize the content of MapT2
	Execute the synchronization of MapT2 with main Map
	Review the result of both synchronization steps

	Applying the actual Change Detection
	Main Map as Domain in the Parent Process
	The Process settings to cookie-cut the outlines of Level_T1
	Execute and review the result
	The Change Detection classification
	Review the Result

	Summary

