@OPENGEO

Developing OGC Compliant Web Applications with GeoExt

About OpenGeo

OpenGeo provides commercial open source software for internet mapping and geospatial

application development. We are a social enterprise dedicated to the growth and support of

open source software.

License

This workshop is freely available for use and re-use under the terms of the Creative Commons

Attribution-Share Alike 3.0 license. Feel free to use this material, but retain the OpenGeo

branding, logos and style.

Welcome to the workshop “Developing OGC Compliant Web Applications with GeoExt”. This
workshop is designed to introduce GeoExt as a web mapping frontend to OGC Web Services (OWS).

This workshop is presented as a set of modules. In each module the reader will perform a set of tasks
designed to achieve a specific goal for that module. Each module builds upon lessons learned in previous
modules and is designed to iteratively build up the reader’'s knowledge base.

The following modules will be covered in this workshop:

GeoExt Basics

Learn how to create a draggable map with a WMS layer.

WMS and the GeoExt LayerStore

Create a WMS browser using GetCapabilities, GetMap, GetFeaturelnfo and GetLegendGraphic.

WES Made Easy with GeoExt

Create a WFS-T editor with a synchronized map and table view.

© Copyright 2011, OpenPlans. (o) TN

@OPENGEO

Developing OGC Compliant Web Applications with GeoExt

GeoExt Basics

GeoExt is a young, rapidly-developing library for building rich, web-based GIS applications. The library is

built upon Ext JS and OpenLayers. The former provides Ul components for building web applications

along with solid underlying data components, the latter is the de-facto standard for dynamic web

mapping.

GeoExt provides mapping related Ul components. It also unifies access to information from OGC
services, OpenlLayers objects and arbitrary remote data sources. This allows for easy presentation of
geospatial information in a wide choice of widgets, ranging from combo boxes or grids to maps and trees.
It has a friendly API, reduces the number of lines of code required, and results in engaging and
responsive mapping applications.

This module introduces fundamental GeoExt concepts for creating a map. You will:

e Create a map,
e Dissect your map,

¢ Find documentation and additional learning resources.

© Copyright 2011, OpenPlans. (o) G

@OPENGEO

Developing OGC Compliant Web Applications with GeoExt

Dissecting Your Map Application

Creating a Map Window

In GeoEXxt, following the conventions of the underlying Ext JS framework, a map is wrapped into an

Ext.Panel. The map is an OpenlLayers.Map object.

It is important to understand that Ext JS encourages a web application paradigm, as opposed to a web
page paradigm. This means that we won't create markup, so the basic ingredients of our application will
be:

e a minimal html document to include JavaScript and CSS resources,

e JavaScript code for application initialization,
e JavaScript code that builds the user interface,

e “Glue” JavaScript code that makes the pieces work together. We don't have any
in this basic example, so we will be learning about it later.

Working Example
Let's take a look at a fully working example of a simple GeoExt application:

<html>
<head>

<title>GeoExt Workshop Application</title>
<link rel="stylesheet" type="text/css" href="ext/resources/css/ext-all.css">
<script type="text/javascript" src="ext/adapter/ext/ext-base.js"></script>
<script type="text/javascript" src="ext/ext-all.js"></script>
<script src="openlayers/OpenLayers.js"></script>
<script type="text/javascript" src="geoext/script/GeoExt.js"></script>

<script type="text/javascript">

Ext.BLANK_IMAGE_URL = "ext/resources/images/default/s.gif";
var app, items = [], controls = [];

Ext.onReady(function() {
app = new Ext.Viewport({
layout: "border",

items: items
})s;
1)

items.push({
xtype: "gx_mappanel™,
ref: "mapPanel”,
region: "center",
map: {
numZoomLevels: 19,
controls: controls
3
extent: OpenlLayers.Bounds.fromArray([
-122.911, 42.291,
-122.787,42.398
1)
layers: [new OpenLayers.Layer.WMS(
"Medford",
"/geoserver/wms?SERVICE=WMS",
{layers: "medford"},
{isBaseLayer: false}
)]
})s
controls.push(
new OpenLayers.Control.Navigation(),
new OpenLayers.Control.Attribution(),
new OpenlLayers.Control.PanPanel(),
new OpenLayers.Control.ZoomPanel()

)s

</script>
</head>
<body>
</body>
</html>

Tasks

1. Copy the text above into a new file called map.html, and save it in the root of the workshop
folder.

2. Open the working application in your web browser: /geoserver/www/gx_workshop/map.html

A working map displaying the town of Medford.

Having successfully created our first GeoExt application, we’ll continue by looking more closely at the
parts.

© Copyright 2011, OpenPlans.

@OPENGEO

Developing OGC Compliant Web Applications with GeoExt

Dissecting Your Map Application

As demonstrated in the previous section, a map that fills the whole browser viewport is generated by

bringing together a minimal html document, application initialization code, and user interface configuration

objects. We'll look at each of these parts in a bit more detail.

Minimal HTML Document

Since the mother of all web browser content is still HTML, every web application needs at least a basic
HTML document as container. It does not contain human readable markup, so it has an empty body. But
it makes sure that all required style and script resources are loaded. These usually go in the document’s
head:

<link rel="stylesheet" type="text/css" href="ext/resources/css/ext-all.css">
<script type="text/javascript" src="ext/adapter/ext/ext-base.js"></script>
<script type="text/javascript" src="ext/ext-all.js"></script>

Ext JS can be used standalone, or together with JavaScript frameworks like JQuery. Depending on this
environment, an appropriate adapter has to be loaded first. We use Ext JS standalone, so we need the

ext-base.js adapter. In the second line, we load the main library.

GeoExt not only relies on Ext JS, but also on OpenLayers. So we also have to load OpenLayers. And

finally, we can load GeoExt:

<script src="openlayers/OpenLayers.js"></script>
<script type="text/javascript" src="geoext/script/GeoExt.js"></script>

Note

When using GeoExt, you also benefit from all the functionality that plain Ext JS and OpenLayers provide. You can
add GeoExt to your existing Ext JS and OpenLayers applications without breaking anything.

Application Initialization Code
Application initialization in this context means code that is executed as early as possible.

Ext.BLANK_IMAGE_URL = "ext/resources/images/default/s.gif";
var app, items = [], controls = [];

items.push({
xtype: "gx_mappanel”,
ref: "mapPanel",
region: "center",
map: {
numZoomLevels: 19,
controls: controls
})
extent: OpenLayers.Bounds.fromArray([
-122.911, 42.291,
-122.787,42.398
IR
layers: [new OpenlLayers.Layer.WMS(
"Medford",
"/geoserver/wms?SERVICE=WMS",
{layers: "medford"},
{isBaselayer: false}
)]
})s

controls.push(
new OpenlLayers.Control.Navigation(),
new OpenlLayers.Control.Attribution(),
new OpenlLayers.Control.PanPanel(),
new OpenlLayers.Control.ZoomPanel()

)8

We start with setting a local URL for the blank image that Ext JS uses frequently, and define some
variables. We populate two arrays. items is the user interface items of our application, and controls is

our OpenLayers map controls.

The really interesting part in the snippet above is the one that with the items that we will add as
configuration objects to the viewport. In Ext JS, we find ourselves creating configuration objects instead of
writing code for most basic tasks, which usually makes application development easier and faster. The

items interact through events and events listeners, the “glue” which we will talk about later.

Before we look at the items in more detail, let’s find out how to add content to our viewport.

Building the User Interface

We already saw that the body of our HTML document is empty. Everything that we see on the web page
is added by Ext JS, but for this to work we need to have the DOM of the page ready, so we can append

to it. To ensure that we don't write to the DOM too early, Ext provides the Ext.onReady () hook.

In our example, the user interface is simple. We just create a new Ext.Viewport with a border layout.
This allows us to fill the whole browser viewport with our application, and we don’t need to add any

markup to our page.

Ext.onReady(function() {
app = new Ext.Viewport({
layout: "border",
items: items

s
s

The Ext.Viewport™ here uses a "border" layout. It can have items for its ~~center,
north, east, south and west regions, but only the center region is mandatory. It takes up all the space

that is not used by the other regions, which need to be configured with a width or height.

Note

To make our workshop application modular, we will be calling Ext.onReady () several times as we add functionality.
There is no need to do this in a real life application, where all DOM dependent code usually goes into a single

Ext.onReady () block.

The GeoExt.MapPanel Component

In Ext JS, all constructors of Ul components take a single argument, which we will be referring to as
“configuration object”. Like all JavaScript objects, this configuration object is wrapped in curly braces, and

contains key: value pairs. Let's have a look at the configuration object for our map:

xtype: "gx_mappanel”,

ref: "mapPanel”,

region: "center",

map: {
numZoomLevels: 19,
controls: controls

})

extent: OpenLayers.Bounds.fromArray([
-122.911, 42.291,

-122.787,42.398

1
layers: [new OpenlLayers.Layer.WMS(

"Medford",
"/geoserver/wms?SERVICE=WMS",
{layers: "medford"},
{isBaselayer: false}

)]

The first three properties are not specific to GeoExt. The xtype tells Ext JS which contstructor to send the
configuration object to. ref defines a reference relative to the container (in this case the Ext.Viewport

we add this item to). The region is the region of the viewport we want to place our map in.

Note

The following two notations are equivalent:

e new GeoExt.MapPanel({region: center, extent: /* ... */});

e {xtype: "gx_mappanel", region: center, extent: /* ... */});

Ext JS keeps a registry of available components, called “xtypes”. GeoExt adds its components to this registry. To
make them distinguishable from others, their names start with the “gx_" prefix. In this context, the ref property is

also important: it is used to create a reference so we can access the component later more easily.

Using xtypes is useful when loading configurations dynamically with AJAX. In that case, the configuration has to be

JSON compliant, and may only contain simple types (numbers, strings and boolean values).

The other properties are specific to the GeoExt .MapPanel: Instead of creating an OpenLayers.Map
instance, we just configure some configuration options for the map in the map option. extent sets the
initial extent of the map, and layers the initial set of layers. For our simple map, we just want to show a

single WMS layer. As in plain OpenLayers, we do this by instantiating an OpenLayers.Layer.WMS object.

The only difference here is that we configure the WMS layer with the {isBaseLayer: false} option.
This is not strictly necessary now, but when we add a layer tree later, we want to see the tree node for

this layer rendered with a checkbox, not with a radio button.

You've successfully dissected your first application! Next let's learn more about developing with GeoExt.

(o) R

@OPENGEO

Developing OGC Compliant Web Applications with GeoExt

GeoExt Resources

The GeoExt library contains a wealth of functionality. Though the developers have worked hard to provide
examples of that functionality and have organized the code in a way that allows other experienced

developers to find their way around, newcomers may find it a challenge to get started from scratch.

Learn by Example

New users will most likely find diving into the GeoExt's example code and experimenting with the library’s
possible functionality the most useful way to begin.

e http://geoext.org/examples.html

In addition, the Ext JS and OpenLayers examples are a valuable knowledge base, especially if you are

getting started with GeoExt and have not used Ext JS or OpenLayers before.

e http://dev.sencha.com/deploy/dev/examples/

e http://openlayers.org/dev/iexamples/

Browse the Documentation

For further information on specific topics, browse the GeoExt documentation. Especially the tutorials and

the introduction to core concepts may be useful for newcomers.

e http:/gecext.org/docs.html (for the latest release)

e http://dev.geoext.org/docs/docs.html (for the latest nighty build)

Find the API Reference

After understanding the basic components that make-up and control a mapping application, search the

API reference documentation for details on method signatures and object properties.

e http://gecext.org/lib/ (for the latest release)

e http://dev.geoext.org/docs/lib/ (for the latest nightly build)

The GeoExt API Reference links to Ext JS and OpenLayers API docs for further reference. The root of
these can be found here:

e http://dev.sencha.com/deploy/dev/docs/

e http://dev.openlayers.org/apidocs/

Join the Community

GeoExt is supported and maintained by a community of developers and users like you. Whether you
have questions to ask or code to contribute, you can get involved by signing up for one of the mailing lists

and introducing yourself.

e Users list http://www.geoext.org/cgi-bin/mailman/listinfo/users (if you are a user of
the GeoExt library)

e Developers list http://www.geoext.org/cgi-bin/mailman/listinfo/dev (if you want to

contribute to the development of the GeoExt library)

(o) RN

@OPENGEO

Developing OGC Compliant Web Applications with GeoExt

WMS and the GeoExt LayerStore

In GeoExt, map layers, features of vector layers and even the zoom levels of a map are accessible like

any remote Ext JS data source. Read by an Ext.data.DataReader, data records are made available to an

Ext.data.Store. Depending on the Reader used, not only OpenLayers objects, but also remote OGC

services can be accessed.

This module introduces GeoExt's WMSCapabilitiesStore, and shows how it can easily be used to
populate grids and trees. At the end, you will find yourself proud of having developed a simple WMS
browser.

In this module you will:

e Create a grid view of layers from a WMS GetCapabilities request,

e Add a tree view to manage the map panel’s layers,
e Add alegend using WMS GetLegendGraphic,

e Explore map features with a WMS GetFeaturelnfo popup,

© Copyright 2011, OpenPlans. m

@OPENGEO

Developing OGC Compliant Web Applications with GeoExt

Creating a Grid View of WMS Capalbilities

The GetCapabilities request is usually the first thing we do when we establish a connection to a WMS
service. It returns a list of available layers, styles and formats, along with metadata like abstracts and

attribution.

Configuring a Grid View

In this exercise, we will create a grid, configured to display a list of all layers from a WMS, and create a
button for adding selected layers from the grid to the map. For the grid, we will be using a
GeoExt.data.WMSCapabilitiesStore. The grid will be added to the “north” region of the simple map viewer

from the previous exercise.

To understand the concept of a grid in Ext JS, let's have a look at the following code (this is not the final

shippet yet):

items.push({

xtype: "grid",

ref: "capsGrid",

title: "Available Layers",

region: "north",

height: 150,

viewConfig: {forceFit: true},

store: new Ext.data.ArrayStore({
data: [["foo", "bar"]],
fields: ["fieldl", "field2"]

})s

columns: [
{header: "Field 1"}, {header: "Field 2"}

1)

Tasks

1. If you haven't already done so, add the text above to your map. html file, at the end of the
application’s script block.

2. Open the page in your browser to confirm things work: /geoserver/www/gx_workshop/map.html.

In addition to the map, you should see a grid with two columns and a single row of dummy data.

Populating the Grid with Data from a GeoExt.data.WMSCapabilitiesStore

Our grid, as it is now, uses an Ext.data.ArrayStore, which provides data in an array along with a field
definition to create records from. This is the basic principle of an Ext JS store: it provides
Ext.data.Record instances created by its Ext.data.Reader. The store can be used to populate e.g.

grids or combo boxes.

The GeoExt.data.WMSCapabilitiesStore uses its reader to create records from a WMS GetCapabilities

response. So for most applications, the only property required in its configuration object is the url for the

GetCapabilities request.

store: new GeoExt.data.WMSCapabilitiesStore({
url: "/geoserver/wms?SERVICE=WMS&REQUEST=GetCapabilities& ERSION=1.1.1",
autolLoad: true

3

This configures the store to use a plain GeoExt.data.WMSCapabilitiesReader, which uses a HTTP GET

request to fetch the data. We add the autoLoad: true configuration property to make sure that the

request gets sent as soon as the component is ready.

The records (GeoExt.data.LayerRecord) in this store contain several fields. In the grid, we want to display

the name, title and abstract fields of each layer. So we have to configure it with the correct column

definition:

columns: [
{header: "Name", dataIndex: "name", sortable: true},
{header: "Title", dataIndex: "title", sortable: true},
{header: "Abstract", datalIndex: "abstract"}

The dataIndex has to match the name of a record’s field. So for a grid, we always need to configure a
store that provides the records for the rows, and a column model that knows which field of each record

belongs to which column.

Tasks

1. Replace the Ext.data.ArrayStore in the example with the properly configured
WNMSCapabilitiesStore from above.

2. Replace the dummy column definition with the correct definition of name, title and abstract for

each layer.

Your grid configuration object should now look like this:

items.push({

xtype: "grid",

ref: "capsGrid",

title: "Available Layers",

region: "north",

height: 150,

viewConfig: {forceFit: true},

store: new GeoExt.data.WMSCapabilitiesStore({
url:

"/geoserver/wms?SERVICE=WMS&REQUEST=GetCapabilities& /ERSION=1.1.1",

autolLoad: true

})J

columns: [
{header: "Name", dataIndex: "name", sortable: true},
{header: "Title", datalndex: "title", sortable: true},
{header: "Abstract", datalndex: "abstract"}

1)

3. Save your changes and reload the application: /geoserver/www/gx_workshop/map.html

Adding an “Add to Map” button

Having successfully loaded WMS Capabilities into a grid, we will now add some code so we can add
layers from the grid to the map.

Tasks

1. Add a bottom toolbar (bbar) definition to the grid config object, below the columns array (don't

forget to add a comma at the end of the columns array!):

bbar: [{
text: "Add to Map",
handler: function() {
app.capsGrid.getSelectionModel().each(function(record) {
var clone = record.clone();
clone.getLayer().mergeNewParams ({
format: "image/png",
transparent: true
})s
app.mapPanel.layers.add(clone);
app.mapPanel.map.zoomToExtent(
OpenLayers.Bounds.fromArray(clone.get("11lbbox"))
)
1)

}]

2.

Reload /geoserver/www/gx_workshop/map.html in your browser again. You should now see an
“Add to Map” button on the bottom of the grid. When you select layers in the grid and hit that
button, the layers should show up in the map.

MECIOeS 00 MOGIONT, UK - | 0ot -
moadiord wotlands Madiord, OR - Wetiands US Fah & Widife National Wetlands Inventory of
madiond 2oning Maediord, CR - Zoning Ciy Zones from the Jackson County Cry Planni m
mediord mediord Layer-Group type layer. mediord 1
worid workd Layer-Group type lyer: workd -
Add To Map

2 A .
= Dallaw’ *, Ao Lﬂbnlwlh .
’-oﬂ.qroy o--® '% 'u.. b
% Caracas Adis Abeba ?mlﬁ\ﬂy
+Sho Paulo ve . Singbore
i, T -
Porto ;Algn ','"°

“world” layer selected in the grid and added to the map by clicking the “Add to Map” button.

A Closer Look

Let's examine the handler function of the “Add to Map” button to get an idea of what is going on when we

click it:

handler: function() {
app.capsGrid.getSelectionModel().each(function(record) {

var clone = record.clone();

clone.getLayer().mergeNewParams ({
format: "image/png",
transparent: true

1)

app.mapPanel.layers.add(clone);
app.mapPanel.map.zoomToExtent (
OpenLayers.Bounds.fromArray(clone.get("1lbbox"))

)8
s

Obviously, the grid has a selection model that we can access using grid.getSelectionModel(). Since
we did not explicitly configure a selection model, our grid automatically instantiated an

Ext.grid.RowSelectionModel. This model provides a method called each, which we can use to walk

through the selected rows. Conveniently, this function gets called with the record of a selected row as

argument.

The first thing we do inside this function is clone the record and assign the layer additional parameters.

var clone = record.clone();

clone.getLayer().mergeNewParams ({
format: "image/png",
transparent: true

s

Why? In the layer records of the WMSCapabilitiesStore, the OpenLayers.Layer.WMS objects (accessed
with the getLayer () method) are configured without an image format, without projection and without
styles. This makes sense because the record also contains information about the available formats,
projections and styles from the Capabilities document. For our example, we are confident that all our
layers support the WGS84 (EPSG:4326) projection by default and have a neat default style, so we do not
care about projection and style. We are also confident that the WMS provides the layer in png format, so
we set the format without looking in the record’s “formats” field. Finally, we set the transparent: true

parameter, so we can stack layers nicely.

We have prepared everything now to finally add the layer to the map:

mapPanel.layers.add(clone);
mapPanel.map.zoomToExtent(
OpenlLayers.Bounds.fromArray(clone.get("11lbbox"))

);

To make the layer appear on the map, all we need to do is add the cloned record to the map panel’s layer
store. Zooming to the extent of the layer is important for the first layer added (yes, you could now remove
the layers config property from the mapPanel configuration object), because it is part of the required
inatialization sequence of an OpenLayers.Map. For subsequent layers, it is convenient to see the whole
layer. The capabilities document provides the extent of the layer, and this information is stored in the
record’s “llbox” field.

Next Steps

It is nice to be able to add layer, but how do we remove them? And how do we change the order of the

layers? All we need to get both is a layer tree.

(eoc) ERECN

@OPENGEO

Developing OGC Compliant Web Applications with GeoExt

Adding a Tree View to Manage the Map Panel’s Layers

With the Ext.tree.TreePanel and its tree nodes, Ext JS provides a powerful tool to work with hierarchical

information. While Ext JS trees cannot be populated from stores, GeoExt provides a tree loader that can
turn information from a layer store into tree nodes. Configured with checkboxes, these can be used to
turn layers on and off. In addition, thanks to drag & drop support of Ext JS trees, layers can easily be

reordered.

Using a Tree Panel for Layer Management

Let's add a tree to the example from the previous section. To do so, we create a tree panel with a
GeoExt.tree.LayerContainer, and add it as new item to our application’s main panel.

Tasks

1. If you don't have it open already, open map.html from the previous example in a text editor. Add

the following tree definition at the end of our application’s script block:

items.push({
xtype: "treepanel®,
ref: "tree",
region: "west",
width: 200,
autoScroll: true,
enableDD: true,
root: new GeoExt.tree.LayerContainer({
expanded: true
})s
bbar: [{
text: "Remove from Map",
handler: function() {
var node = app.tree.getSelectionModel().getSelectedNode();
if (node && node.layer instanceof OpenLayers.Layer.WMS) {
app.mapPanel.map.removelLayer(node.layer);

}
1)

2. Reload /geoservermww/gx workshop/map.html in your browser to see the changes. On the left-

hand side of the map, we have a tree now. Add some layers from the grid to the map and watch
them also appear in the tree. Use the checkboxes to turn layers on and off. Drag and drop layers
in the tree to change their order on the map. Select a layer by clicking on the node text, and
remove it by clicking the “Remove from Map” button.

Bike nes in Jackson County, Oregon as of Dec...
Borders of world continents.
The bulding outines for Medford, Cregon as of ..,

Location of some major international clios. |
Local Jursdiction of Madiord. Oreonn as of Juby

A tree view of the map’s layers for convenient layer management

Looking at the New Code More Closely

First, let's have a look at the tree configuration again to see what it consists of.

As we already saw, we can drag and drop tree nodes. This is enabled by setting enableDD: true. More

interesting is the root property.

root: new GeoExt.tree.lLayerContainer({

3

expanded: true

Every tree needs to have a root node. GeoExt provides a special layer container node type. Configured
with the map panel’s layer store as its layerStore config option, it will be populated with layer nodes for
each of the map’s layers. Note that we omitted the 1ayerStore config option. The LayerContainer takes

the layers property from the first MapPanel it finds in the Ext JS registry in this case.

The nodes the LayerContainer is populated with are GeoExt.tree.LayerNode instances. The container

makes sure that the list of layers is always synchronized with the map, and the node’s checkbox controls

the layer’s visibility.

Surprisingly, adding a root node that has all map layers as children requires less coding effort than the

button to remove layers:

bbar: [{
text: "Remove from Map",
handler: function() {
var node = app.tree.getSelectionModel().getSelectedNode();
if (node && node.layer instanceof OpenLayers.Layer.WMS) {
app.mapPanel.map.removelLayer(node.layer);

}]

We already know the concept of a bottom toolbar from a previous exercise. The flesh of the above

snippet is the handler function that gets executed when the button is clicked. Like the grid, the tree also
has a selection model. The default selection model only supports selection of one node at a time, and we
can get the selected node using its getSelectedNode () method. All that is left to do is check if there is a
selected node, and if the layer is a WMS layer (we don’t want to allow removal of vector or other layers
we might be adding manually), and remove the layer from the map using the removeLayer () method of

the OpenLayers.Map object.

Next Steps

Now that we can control the content of the map using a tree, we will want a legend that explains the map

content.

(o) R

@OPENGEO

Developing OGC Compliant Web Applications with GeoExt

Adding a Legend Using WMS GetLegendGraphic

It looks like WMS is a good friend of ours: We already got a grid view of layers built from a WMS
GetCapabilities request. Without knowing, the layers that we see on the map are images fetched using
WMS GetMap, and now we are about to learn about legends created from a WMS GetLegendGraphic

request.

A LegendPanel with WMS GetLegendGraphic Images

Let's add another panel to our WMS browser. For a legend view, GeoExt provides the

GeoExt.LegendPanel. This panel can use a legend image configured in the record’s styles field, or

generate WMS GetLegendGraphic requests.

Tasks

1. Openmap.html in your text editor again. Add the following legend panel definition at the bottom
of the application’s script block:

items.push({
xtype: "gx_legendpanel”,
region: "east",
width: 200,
autoScroll: true,
padding: 5

1)

2. Load or refresh /geoserver/www/gx_workshop/map.html in your browser to see the new legend

panel on the right-hand side of the map. Add a layer and watch its legend image appear in the

panel.

Name Ttio Absiract
Mediord Diokaros Modiord, UK - Bike Lanes Bﬁﬁ“l\.‘kam‘(}mndm..
workd borders Worid - Borders Bocrders of workd continents
modiord bulldngs Maodford, OR - Bulidings The bulding outines for Madford, Cregon as of ...
works clies Worid - Cies Location of some major international clies 1%
medford crylmes Mediord, OR - City Limés Local Jurisdiction of Medtord, Oregon as of July ... v
Add To Map
5 Layers Medford, OR - Bulldings

¥ Mectord, OR - Buildings =

T Mectord, OR - Zoning

E]#Moctord, OR - Ciy Limts

L\ | Medford, OR - Zoning
M Suburban: 1 Acre Minimu
Ch | o Suburban: 2.5 Acre Minirr]
&L Rural: S Acre Minitnurn
[_'er_-s\c's_m:ual- Farm S Acre
B commercial: General
[Commercial: Neighborhad
Elresource: Exclusive Farm
@Resource: Open Space R¢
B industrial: General
Industrial: Light
Bindustrial: Airport Develoy
W Residential: Multi-Family =
W Residential: Multi-Family 2%
DF‘I’,‘E:CEO.“(:h_'sl: Multi-Family 1'

WMS browser with a legend describing the map content.

A Closer Look at the New Code

What has happened? We have created a legend panel and placed it in the “east” region (i.e. on the right)
of our application’s main panel. The only configuration option specific to the legend panel would be the
layerStore property, which — again — references the layer store of the map panel, and can be omitted
when the application has only one map.

What's Next?

As you can see, adding additional components to a GeoExt application is easy — thanks to Ext JS.

In the last part of this exercise, we will see another way of adding components to an application — by
using an OpenLayers.Control that creates Ext JS output in a listener function. Let's try this with a
GetFeaturelnfo popup.

© Copyright 2011, OpenPlans.

@OPENGEO

Developing OGC Compliant Web Applications with GeoExt

Explore Map Features with a WMS GetFeaturelnfo Popup

With GetFeaturelnfo, WMS provides an easy way to query a map for feature info. Using OpenLayers and

GeoExt makes it easy to access this information from within our application

The OpenLayers WMSGetFeaturelnfo control and GeoExt Popups

Let's get familiar with OpenLayers.Control. WMSGetFeaturelnfo control and GeoExt.Popup. Also, the

Ext.grid.PropertyGrid will be useful to display the feature info in a nice grid - without the need to create
another store manually.

Tasks

1. For the popup, we need to include a CSS file in our document’s head, which provides the styles
for the popup’s anchor:

<link rel="stylesheet" type="text/css" href="geoext/resources/css/popup.css">

Note

GeoExt provides a CSS file which contains all styles that its widgets might require. So if you want to avoid having to
worry about required CSS resources, you can include geoext-all.css (or geoext-all-debug.css for the

developer version we are using here) instead of popup.css.

2. Now we can create the control. The code below should be added at the end of the application’s
script block:

controls.push(new OpenLayers.Control.WMSGetFeatureInfo({
autoActivate: true,
infoFormat: "application/vnd.ogc.gml",
maxFeatures: 3,
eventListeners: {
"getfeatureinfo": function(e) {
var items = [];
Ext.each(e.features, function(feature) {
items.push({
xtype: "propertygrid",
title: feature.fid,
source: feature.attributes

})s

})s

new GeoExt.Popup({
title: "Feature Info",
width: 200,
height: 200,
layout: "accordion",
map: app.mapPanel,
location: e.xy,
items: items

}).show();

}
s

Now let's examine the code we just added a bit.

Note the eventListeners config option for the WMSGetFeaturelnfo control. We listen to the
“getfeatureinfo” event, which is fired every time we get back feature information from the WMS.
For each feature that we get back, we create a property grid:

Ext.each(e.features, function(feature) {
items.push({
xtype: "propertygrid",
title: feature.fid,
source: feature.attributes
1
})s

The PropertyGrid is a very convenient component for a WMSGetFeaturelnfo control configured
with an infoFormat that returns something we can parse (i.e. not plain text or html). We do not
need to configure this component with a store (like we did for the WMSCapabilities grid), we just
pass it an arbitrary object (the attributes of a feature here) as source config option, and it will

create a store internally and populate the grid with its data.

We can easily put a popup on the map and anchor it to the position we clicked on the map:

new GeoExt.Popup({
title: "Feature Info",
width: 200,
height: 200,
layout: "accordion",
map: app.mapPanel,
location: e.xy,
items: items

}).show();

With the 1location config option, we anchor the popup to the position where the click occured

(e.xy). We give it an “accordion” layout, and the items are the property grids we created above.

aNo
(<> Mt
Name Telo - _ Abstract .
medioed bicelanes Mediord, OR - Bke Lary Feature Info X bregon as of Dec... 0
workd borders World - Borders +
madiond buldings Mediord, OR - Bulltings | gtylimits.1 +/|),Cregonas of ... L
workd cles World - Clies. busldings. 47975 + || brai ctios -
L4

medined civimis Mactiord OR - Cov Lime ina.180 + | oo as of Jut »
Add To Map

o | schools.34 -
33 Layers

TI@ Mectors i e
addross 649 Crator Lake Avenue

Private

Map with a popup populated from WMS GetFeaturelnfo

Conclusion
You have successfully created a WMS browser application! The whole application has about 120 lines of

code. Not much when you consider how many features we were able to pack into it. And it wasn't that
hard to develop, was it?

© Copyright 2011, OpenPlans. m

@OPENGEO

Developing OGC Compliant Web Applications with GeoExt

WFS Made Easy with GeoExt

GeoExt provides access to remote WFS data vie Stores and Readers, using the same mechanisms that

Ext JS provides for any remote data access. Because the GeoExt.data.FeatureStore can synchronize its

records with an OpenLayers vector layer, working with vector features from WFS is extremely effortless.

Users familiar with desktop based GIS applications expect to have a combined map and table (grid) view
of geospatial data. GeoExt brings this feature to the web. At the end of this module, you will have built a
simple WFS feature editor. The grid view comes for free because Ext JS can display data from any store
in a grid, and the synchronized selection between map and table is also handled by GeoExt. Rendering
the data on the map, editing and committing changes over WFS-T is provided by OpenLayers.

GeoExt's FeatureReader is not limited to WFS protocol and GML — other protocols (e.g. plain HTTP) with
formats like KML, GeoRSS or GeoJSON work as well.

In this module, you will:

e Create a synchronized grid and map view of WES features,

e Make features editable,

¢ Save modifications over WFS-T.

© Copyright 2011, OpenPlans. (@) ev-sn |

@OPENGEO

Developing OGC Compliant Web Applications with GeoExt

Creating a Synchronized Grid and Map View of WFS Features

GeoExt borrows most of its WFS support from OpenLayers. What it does provide though is the

GeoExt.data.FeatureStore, so showing feature attributes in a grid is a very easy task. If we just want to

display features in a grid, we can use a GeoExt.data.ProtocolProxy, so we don’t even need an

OpenlLayers layer.

Vector Features on a Map and in a Table

Let’s build editing functionality into the WMS browser from the previous chapter. But one piece at a time.
We'll start with some code that reads a WFS layer, displays its features on a map, shows the attributes in
a grid, and synchronizes feature selection between map and grid:

Tasks

1. Open the map.html file from the previous exercise in a text editor. Paste the code below at the

bottom of the application’s script block:

var vectorLayer = new OpenlLayers.Layer.Vector("Vector features");
items.push({

xtype: "grid",

ref: "featureGrid",

title: "Feature Table",

region: "south",

height: 150,

sm: new GeoExt.grid.FeatureSelectionModel(),

store: new Ext.data.Store(),

columns: []

1)

2. The above does not do much. It just creates a vector layer, and an empty grid in the “south”
region of the application viewport. We want to populate it with features from the layer that is
selected in the tree, and want them rendered on the map also. To achieve this, add the following
code at the bottom of the application’s script block (no worries, everything will be dissected and

explained below):

var read = OpenlLayers.Format.WFSDescribeFeatureType.prototype.read;
OpenLayers.Format.WFSDescribeFeatureType.prototype.read = function() {
rawAttributeData = read.apply(this, arguments);
return rawAttributeData;

i

var rawAttributeData, selectedlLayer;
function setLayer(model, node) {
if(!(node && node.layer instanceof OpenLayers.Layer.WMS)) {
return;
¥
selectedLayer = null;
vectorLayer.removeAllFeatures();
app.featureGrid.reconfigure(
new Ext.data.Store(),
new Ext.grid.ColumnModel([])
)
var layer = node.layer;
var url = layer.url.split("?")[@];
var schema = new GeoExt.data.AttributeStore({
url: url,
baseParams: {

"SERVICE": "WFS",

"REQUEST": "DescribeFeatureType",

"VERSION": "1.1.0",

"TYPENAME": layer.params.LAYERS

s
autolLoad: true,
listeners: {

"load": function(store) {
app.featureGrid.setTitle(layer.name);
selectedLayer = layer;
configureGrid(store, url);

s

function configureGrid(store, url) {
var fields = [], columns = [], geometryName, geometryType;
var geomRegex = /gml:(Multi)?(Point|Line|Polygon|Surface|Geometry).*/;
var types = {

int",
"int",
xsd:long": "int",

xsd:int
"xsd:short":

xsd:string": "string",
xsd:dateTime": "string",
"xsd:double": "float",
"xsd:decimal": "float",

"Line": "Path",
"Surface": "Polygon"
s
store.each(function(rec) {
var type = rec.get("type");
var name = rec.get("name");
var match = geomRegex.exec(type);
if (match) {
geometryName = name;
geometryType match[2] == "Line" ? "Path" : match[2];
} else {
fields.push({
name: name,

type: types[type]

Dk

columns.push({
xtype: types[type] == "string" ?
"gridcolumn"
"numbercolumn”,
dataIndex: name,
header: name

s

s

app.featureGrid.reconfigure(new GeoExt.data.FeatureStore({
autolLoad: true,
proxy: new GeoExt.data.ProtocolProxy({
protocol: new OpenLayers.Protocol.WFS({
url: url,
version: "1.1.0",
featureType: rawAttributeData.featureTypes[0].typeName,
featureNS: rawAttributeData.targetNamespace,
srsName: "EPSG:4326",
geometryName: geometryName,
maxFeatures: 250,
)

1),
fields: fields

}), new Ext.grid.ColumnModel(columns));
app.featureGrid.store.bind(vectorLayer);
app.featureGrid.getSelectionModel().bind(vectorLayer);

Ext.onReady(function() {
app.mapPanel.map.addLayer(vectorLayer);
app.tree.getSelectionModel().on(

"selectionchange", setlLayer
)5
}s

3. After saving your changes, point your browser to /geoserver/www/gx_workshop/map.html. You

should see a new grid in the application. When you add a layer to the map that is available as
WEFS also, the grid will be populated with data, and its features will be rendered on the map.
When clicking a row in the grid, its geometry gets highlighted on the map. And when clicking a
feature on a map, its attributes will be highlighted in the grid.

ano GeoExt Workshop Application : :
ldiblila cIQ'Cooqle I
Available Layers

Name Ttio Abstract

e — ST T B e L
mediond hydro Mediord, OR - Hydro US Fish & Widife National Wetlands Inveniory of m
mediord brares Medford, OR - Libraries Location of Libraries in Jackson County, Oregon . ‘:
mediord parks Medford, OR - Parks Open parks within Maedford, Cregon. v
Add to Map

33 Layers Medford, OR - Parks

T)#¥Mectord, OR - Parks

[+ -] .
¥ Eceabio features Edtable features
+ > (Untitled 1
¥ o

1 :a\
Remove from Map
Medford, OR - Parks
owner agoncy usage parktype number_tac area on
Chy Of Medfore Cry Cf Modford Public Park 0.00 406,905 55 274222 =
Ciry Of Mediord Cry Of Modford Publc Fores! Park 0.00 26,366,703.24 212329
Coy OfMeodford CRy Of Medford Publc Forest Park 0.00 8.787,576.13 13.261.42 m
Ciy Of Mediord Cry Of Modford Publc Forest Park 0.00 26,322 36713 21,201.85 "_‘
Cery Of Mediord Cry Of Modiord Publc Forest Park 0.00 11,352,183.99 15.881.16 v

A synchronized map and grid view of WFS features.

Understanding the Code

GeoExt currently does not keep a copy of the raw return value of the WFSDescribeFeatureType format’s
read method, but we need more information than just the attributes. So we save the complete return
value in the rawAttributeData variable. To do so, we override the read() method of

OpenLayers.Format.WFSDescribeFeatureType:

var read = OpenlLayers.Format.WFSDescribeFeatureType.prototype.read;

OpenLayers.Format.WFSDescribeFeatureType.prototype.read = function() {
rawAttributeData = read.apply(this, arguments);
return rawAttributeData;

45

The entry point to populating the grid is a listener that gets called every time the layer selection in the tree

changes. We register this listener as soon as the vectorLayer is added to the map.

Ext.onReady(function() {
app.mapPanel.map.addLayer(vectorLayer);
app.tree.getSelectionModel().on(

"selectionchange", setLayer
)
})s

The setLayer () function issues a WFS DescribeFeatureType request. The response to this request is

the XML schema for the layer, and we use the GeoExt.data.AttributeStore for easy access to the fields

and their data types. This function is still too big to explain, so let's look at it piece by piece:

if(!(node && node.layer instanceof OpenLayers.Layer.WMS)) {
return;

We return immediately from the function when no node is selected and when the node’s layer is not a
WMS layer.

selectedLayer = null;
vectorLayer.removeAllFeatures();
app.featureGrid.reconfigure(

new Ext.data.Store(),

new Ext.grid.ColumnModel([])
)5
var layer = node.layer;
app.featureGrid.setTitle(layer.name);

Otherwise, we clear the currently selected layer and reconfigure the grid with an empty store and no

columns. Finally, we set the title bar of the grid to the name of the currently selected layer.

Now let's look at how we get the fields of the layer:

var url = layer.url.split("?")[0];
var schema = new GeoExt.data.AttributeStore({
url: url,
baseParams: {
"SERVICE": "WFS",
"REQUEST": "DescribeFeatureType",
"VERSION": "1.1.0",

"TYPENAME": layer.params.LAYERS
}s

autolLoad: true,
listeners: {
"load": function(store) {
selectedLayer = node.layer;
configureGrid(store, url);

s

With layer.url.split("?")[0]; we strip the request parameters from the url, and with baseParams we
add the request parameters for the DescribeFeatureType request. Finally, in the “load” listener, we store
the selectedLayer, and move on by calling the configureGrid() function, which finally configures the

grid with the appropriate fields and data types:

var types = {

"xsd:int": "int",
"xsd:short": "int",
"xsd:long": "int",
"xsd:string": "string",
"xsd:dateTime": "string",
"xsd:double": "float",
"xsd:decimal": "float",

"Line": "Path",
"Surface": "Polygon"

}s

The above is just a mapping of some types defined for XML Schema to Ext JS record field and

OpenLayers geometry types. For a real-life application, this would have to be more fine-grained.
var geomRegex = /gml:(Multi)?(Point|Line|Polygon|Surface|Geometry).*/;

This looks scary, but it is just a regular expression to determine the geometry type of the current feature.

We need this to tell whether we are dealing with a geometry or a feature attribute.

store.each(function(rec) {

var type = rec.get("type");
var name = rec.get("name");
var match = geomRegex.exec(type);
if (match) {

geometryName = name;

geometryType = types[match[2]] || match[2];
} else {

fields.push({

name: name,

type: types[type]

1)

columns.push({

s

s

Here we walk through all the field records of the AttributeStore and create configuration objects for both

the grid’s fields and the ColumnModel's columns. And we set the geometryType that we will use later for

xtype: types[type] == "string" ?

"gridcolumn"
"numbercolumn”,

dataIndex: name,
header: name

the DrawFeature control to give us geometries of the correct type.

Finally, we can reconfigure the grid to use the new store and column configuration:

app.featureGrid.reconfigure(new GeoExt.data.FeatureStore({

autolLoad: true,
proxy: new GeoExt.data.ProtocolProxy({
protocol: new OpenLayers.Protocol.WFS({

}

1)
fields:

url: url,

version: "1.1.0",

featureType: rawAttributeData.featureTypes[0].typeName,
featureNS: rawAttributeData.targetNamespace,

srsName: "EPSG:4326",

geometryName: geometryName,

maxFeatures: 250,

fields

}), new Ext.grid.ColumnModel(columns));

The grid’'s reconfigure method takes two arguments: a store and a columnModel. This is enough to

get the grid working with data from a new vector layer, but for updating the map and making the selection

model work, we need to point the store and the selection model to the vector layer:

app.featureGrid.store.bind(vectorLayer);
app.featureGrid.getSelectionModel().bind(vectorLayer);

Next Steps

Just displaying vector features is somewhat boring. We want to edit them. The next section explains how

to do that.

@) ev-zn]

@OPENGEO

Developing OGC Compliant Web Applications with GeoExt

Editing Featuers and Their Attributes

We will now enhance our application by making the layer and its attributes editable, and using WFS-T to

commit changes.

Making Layer and Grid Editable

Let's modify our application to allow for editing feature geometries and attributes. On the layer side this
requires replacing the SelectFeature control that the FeatureSelectionModel automatically creates with a
ModifyFeature control, and adding a DrawFeature control for creating new features. On the grid side, we
have to replace the GridPanel with an EditorGridPanel, provide editors for the columns, and reconfigure
the FeatureSelectionModel a bit.

Tasks

1. Openmap.html in your text editor. Find the block where we created the featureGrid:

var vectorLayer = new OpenlLayers.Layer.Vector("Vector features");
items.push({

xtype: "grid",

ref: "featureGrid",

title: "Feature Table",

region: "south",

height: 150,

sm: new GeoExt.grid.FeatureSelectionModel(),

store: new Ext.data.Store(),

columns: []

1)

2. Replace this block with the following new code:

var vectorLayer = new OpenlLayers.Layer.Vector("Editable features");
var modifyControl = new OpenLayers.Control.ModifyFeature(
vectorLayer, {autoActivate: true}
)
var drawControl = new OpenLayers.Control.DrawFeature(
vectorLayer,
OpenLayers.Handler.Polygon,

{handlerOptions: {multi: true}}
)
controls.push(modifyControl, drawControl);
items.push({
xtype: "editorgrid",
ref: "featureGrid",
title: "Feature Table",
region: "south",
height: 150,
sm: new GeoExt.grid.FeatureSelectionModel({
selectControl: modifyControl.selectControl,
autoActivateControl: false,
singleSelect: true
})J
store: new Ext.data.Store(),
columns: [],
bbar: [{
text: "Delete",
handler: function() {
app.featureGrid.getSelectionModel().each(function(rec) {
var feature = rec.getFeature();
modifyControl.unselectFeature(feature);
vectorLayer.removeFeatures([feature]);
})s

}
}, new GeoExt.Action({

control: drawControl,
text: "Create",
enableToggle: true

1
1)

3. Inthe configureGrid() function, configure editors for the grid columns: TextField for string
types, and NumberField for all others. We will also need to set the correct sketch handler for the
DrawFeature control, depending on the geometryType of the layer we are editing. This is how the

whole function should look with the changes applied:

function configureGrid(store, url) {
var fields = [], columns = [], geometryName, geometryType;
var geomRegex = /gml:(Multi)?(Point|Line|Polygon|Surface|Geometry).*/;
var types = {
"xsd:int": "int",
"xsd:short": "int",
"xsd:long": "int",
xsd:string": "string",
xsd:dateTime": "string",
xsd:double": "float",
xsd:decimal": "float",

"Line":
"Surface

1

"Path",
": "Polygon"

store.each(function(rec) {

var type

var name

var matc
if (matc

= rec.get("type");

= rec.get("name");

h = geomRegex.exec(type);
h) {

geometryName = name;

geometryType

} else {

types[match[2]] || match[2];

fields.push({

Dk

name: name,

type: types[type]

columns.push({

s

s

xtype: types[type] == "string" ?
"gridcolumn"
"numbercolumn”,

dataIndex: name,

header: name,

editor: {
xtype: types[type] == "string" ?
"textfield"
"numberfield"
}

app.featureGrid.reconfigure(new GeoExt.data.FeatureStore({
autolLoad: true,
proxy: new GeoExt.data.ProtocolProxy({
protocol: new OpenLayers.Protocol.WFS({

}

1)
fields:

}), new Ext.

url: url,

version: "1.1.0",

featureType: rawAttributeData.featureTypes[0].typeName,
featureNS: rawAttributeData.targetNamespace,

srsName: "EPSG:4326",

geometryName: geometryName,

maxFeatures: 250,

fields
grid.ColumnModel(columns));

app.featureGrid.store.bind(vectorLayer);
app.featureGrid.getSelectionModel().bind(vectorLayer);

drawControl.

handler = new OpenlLayers.Handler[geometryType](

drawControl, drawControl.callbacks, drawControl.handlerOptions

);

The Changes Explained

For editing existing and creating new features, we use OpenLayers.Control.ModifyFeature and

OpenlLayers.Control.DrawFeature:

var modifyControl = new OpenLayers.Control.ModifyFeature(
vectorLayer, {autoActivate: true}

)

var drawControl = new OpenlLayers.Control.DrawFeature(
vectorLayer,
OpenLayers.Handler.Polygon,
{handlerOptions: {multi: true}}

)s

controls.push(modifyControl, drawControl);

The FeatureSelectionModel needs more configuration now. For just viewing, we are happy with the
SelectFeature control that it uses internally. But now that we need the ModifyFeature control for
editing existing features, we have to configure the FeatureSelectionModel with the SelectFeature
control that the ModifyFeature control uses internally. Also, we don’t want the control to be auto-
activated, because we already configured the ModifyFeature control with the autoActivate: true
option. Finally, we set singleSelect: true, which means only one feature can be selected at a time for

editing.

sm: new GeoExt.grid.FeatureSelectionModel({
selectControl: modifyControl.selectControl,
autoActivateControl: false,
singleSelect: true

1

The next change is that we want a bottom toolbar on the grid, with buttons for deleting and creating
features.

The “Delete” button is just a plain Ext.Button. When clicked, it performs the action defined in its handler.

text: "Delete",
handler: function() {
app.featureGrid.getSelectionModel().each(function(rec) {
var feature = rec.getFeature();
modifyControl.unselectFeature(feature);
vectorLayer.removeFeatures([feature]);

s

Inside the handler, we walk through the grid’s current selection. Before removing a record, we use the
modifyControl's unselectFeature method to remove the feature’s editing vertices and unselect the

feature, bringing the layer to a clean state.

Thanks to our FeatureStore, a feature added to the layer will automatically also show up in the grid. The
“Create” button uses a GeoExt.Action to turn an OpenLayers control into a button. It is important to
understand that any OpenLayers control can be added to a toolbar or menu by wrapping it into such an

Action.

new GeoExt.Action({
control: drawControl,
text: "Create",
enableToggle: true

)

Next Steps

It is nice to be able to create, modify and delete features, but finally we will need to save our changes.
The final section of this module will teach you how to use the WFS-T functionality of OpenLayers to

commit changes to the server.

(o) RN

@OPENGEO

Developing OGC Compliant Web Applications with GeoExt

Committing Feature Modifications Over WFS-T

Until GeoExt also provides writers, we have to rely on OpenLayers for writing modifications back to the
WEFS. This is not a big problem though, because WFS-T support in OpenLayers is solid. But it requires us

to take some extra care of feature states.

Managing Feature States

" ou

For keeping track of “create”, “update” and “delete” operations, OpenlLayers vector features have a state
property. The WFS protocol relies on this property to determine which features to commit using an

“Insert”, “Update” or “Delete” transaction. So we need to make sure that the state property gets set

properly:

e OpenLayers.State.INSERT for features that were just created. We do not need to do anything
here, because the DrawFeature control handles this for us.

e OpenLayers.State.UPDATE for features with modified attributes, except for features that have
OpenLayers.State.INSERT set already. For modified geometries, the ModifyFeature control
handles this.

e OpenLayers.State.DELETE for features that the user wants to delete, except for features that

have OpenLayers.State.INSERT set, which can be removed.

Tasks

1. Open map.html in your text editor. Find the “Delete” button’s handler and change it so it properly
sets the DELETE feature state and re-adds features to the layer so the server knows we want to
delete them:

handler: function() {
app.featureGrid.getSelectionModel().each(function(rec) {
var feature = rec.getFeature();
modifyControl.unselectFeature(feature);
vectorLayer.removeFeatures([feature]);
if (feature.state !== OpenLayers.State.INSERT) {
feature.state = OpenLayers.State.DELETE;
app.featureGrid.store.featureFilter = new OpenLayers.Filter({
evaluate: function(f) { return feature !== f; }

s

vectorLayer.addFeatures([feature]);

1)

By setting the featureFilter on the store we prevent the feature from being re-added to the store.
In OpenLayers, features with DELETE state won't be rendered, but in Ext JS, if we do not want a

deleted feature to show up in the grid, we have to make sure that it is not in the store.

Adding a Save Button

Saving feature modifications the OpenlLayers way usually requires the vector layer to be configured with
an OpenLayers.Strategy.Save. But since we have a store configured with the WFS protocol in GeoExt,

we do not need that. Instead, we can call the protocol’'s commit () method directly to save changes.

Tasks

1. Find the grid’s bbar definition in your map . html file and add the “Save” button configuration and

handler. When done, the bbar definition should look like this:

bbar: [{
text: "Delete",
handler: function() {
app.featureGrid.getSelectionModel().each(function(rec) {
var feature = rec.getFeature();
modifyControl.unselectFeature(feature);
vectorLayer.removeFeatures([feature]);
if (feature.state !== OpenLayers.State.INSERT) {
feature.state = OpenLayers.State.DELETE;
app.featureGrid.store._adding = true;
vectorLayer.addFeatures([feature]);
delete app.featureGrid.store._adding;

s
}

}, new GeoExt.Action({
control: drawControl,
text: "Create",
enableToggle: true
1, A
text: "Save",
handler: function() {
app.featureGrid.store.proxy.protocol.commit (
vectorLayer.features, {
callback: function() {
selectedLayer.redraw(true);

app.featureGrid.store.reload();

1)
1

2. Save your file and reload /geoserver/iwww/gx_workshop/map.html. Make some changes and hit

“Save”. Reload the page to see that your changes were persisted.

8006 GeoExt Workshop Application

@ http:/ /localhost/~ahocevar [projects fworkshops /projects/geoext/generic_! & I Q~ Google

Name Titlo Abatract
modiord hydro Medford, OR - Mydro US Fiah & Widife National Wetlands Inventory of... =~
modiond Rrares Modiord, OR - Libraries Location of Lbrares in Jackson County, Oregon | 0

N
mediord parks Mediord, OR - Parks Open parks within Medford, Cregon. -
mextioed nokcn Maxtioed OR « Polca Location of Polca Stations in dackson Countv. 0 LY
Add 10 Map
d 3 Layers Medford, OR - Parks

T Mectord, OR - Parks =
I ectadi teatures Ecitable features
() Untitled 1

Remove from Map
Medford, OR - Parks
owner agency usage parktype number_fac area Ion
T e gy ool e v v oy verviery T

-
Meodford School... Mediord School. Publc Achietc Fiold 0.00 340,987 48 2567 40 0
Cey of Medlord Cry of Medford 0.00 172,603 53 180127 y
me mine peivato secret 0.00 000 0.00 v
Delote Create Save

Application with “Save” button and a persisted feature after reloading.

One More Look at the “Save” Button’s Handler

By calling the commit () method with a callback option, we can perform actions when the commit
operation has completed. In this case, we want to redraw the selected WMS layer, to reflect the changes.
And we also reload the WFS layer, to reset all feature states and have all features with their correct
feature ids.

callback: function() {
selectedLayer.redraw(true);
app.featureGrid.store.reload();

In Ext JS, the commitChanges method of a store is used to save changes. We use OpenlLayers to
perform the WFS transaction, so we would not necessarily have to call commitChanges. But doing so will
make sure that the records are no longer marked “dirty”, which resets the store into the same clean state
that the layer will be in when the commit operation is finished. The pleasant side effect of calling

commitChanges is that the tiny read triangles in the top left corner of edited grid cells disappear.

Conclusion

You have successfully created a WFS based feature editor. GeoExt makes working with features easy,
thanks to its FeatureStore. Although there is no write support yet for the FeatureStore in GeoExt, saving
changes via WFS-T is easy because of the solid WFS-T support in OpenLayers and the interoperability
between GeoExt and OpenLayers.

	0 - index
	1-0 index
	1-1 map
	1-2 dissect
	1-3 resources
	2-0 index
	2-1 capabilities
	2-2 tree
	2-3 legend
	2-4 getfeatureinfo
	3-0 index
	3-1 grid
	3-2 editing
	3-3 wfst

