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As an intrinsic property of natural materials, land surface emissivity (LSE) is an important
surface parameter and can be derived from the emitted radiance measured from space.
Besides radiometric calibration and cloud detection, two main problems need to be
resolved to obtain LSE values from space measurements. These problems are often
referred to as land surface temperature (LST) and emissivity separation from radiance at
ground level and as atmospheric corrections in the literature. To date, many LSE retrieval
methods have been proposed with the same goal but different application conditions,
advantages, and limitations. The aim of this article is to review these LSE retrieval
methods and to provide technical assistance for estimating LSE from space. This article
first gives a description of the theoretical basis of LSE measurements and then reviews the
published methods. For clarity, we categorize these methods into (1) (semi-)empirical or
theoretical methods, (2) multi-channel temperature emissivity separation (TES) methods,
and (3) physically based methods (PBMs). This article also discusses the validation
methods, which are of importance in verifying the uncertainty and accuracy of retrieved
emissivity. Finally, the prospects for further developments are given.

1. Introduction

Land surface emissivity (LSE), as an intrinsic property of natural materials, is often
regarded as an indicator of material composition, especially for the silicate minerals,
although it varies with viewing angle and surface roughness (Sobrino, Raissouni, and Li
2001; Sobrino, Jimenez-Munoz, and Verhoef 2005). Therefore, LSE is important not only
for studies of soil development and erosion and for estimation of amounts of sparse vegeta-
tive cover and changes in this cover, but also for bedrock mapping and resource exploration
(Gillespie et al. 1998), as well as for the accurate estimates of surface energy budgets (Jin
and Liang 2006).

Generally speaking, the retrieval of LSE from space is not easy. The direct estimation of
LSE from passive satellite measurements is impossible due to the combined effects of the
land surface temperature (LST) and LSE or the atmospheric contamination (Li, Petitcolin,
and Zhang 2000; Jiang, Li, and Nerry 2006). In other words, there are at least two problems
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to be resolved besides the radiometric calibration and cloud detection (Becker and Li 1995):
(1) a separation of surface emissivity and temperature from radiance at ground level and
(2) atmospheric corrections.

First, the problem of underdetermination is troublesome because the problem is mathe-
matically unsolvable even for at-ground radiances. The radiative transfer equation (RTE)
shows that the radiance emitted from the surface in the infrared region is a function of
its temperature and its emissivity. If the radiance is measured at N wavelengths, there
will always be N + 1 unknowns, corresponding to N emissivities at each wavelength
and an unknown surface temperature. The solution of a set of underdetermined equations
described by measured radiances is the main difficulty in the retrieval of LST and LSE. The
coupling of LST and LSE makes the determination of LSE require the simultaneous deter-
mination of LST and vice versa (Li and Becker 1993; Becker and Li 1995; Li, Petitcolin,
and Zhang 2000).

In addition, atmospheric absorption and emission and surface reflection further com-
plicate the problem. The energy exchange between the land surface and the atmosphere
is always mixed in the thermal infrared (TIR) spectral band. On the one hand, the emis-
sivity is not equal to 1 (unity) and causes a reduction of the surface-emitted radiance;
on the other hand, it reflects the downwelling of the atmospheric irradiance back into the
atmosphere. The anisotropy of reflectivity and emissivity can reduce or increase the total
radiance from the surface (Prata 1993). Moreover, the surface-leaving radiance is attenu-
ated by the atmosphere before reaching the sensors. Accounting for the compensation of
upwelling atmospheric radiance, the atmosphere can also have indeterminate effects on
the surface-leaving radiance. Obviously, the combined effect of the non-unity emissivity
and the atmosphere increases the complexity of retrieving LST and LSE from the top-of-
atmosphere (TOA) measurements (Dash et al. 2005). From these points of view, LSE can
be considered as a critical variable that must be known a priori to correct surface radiances
and retrieve LST. Furthermore, it is the key point for solving the coupling problem of the
land surface and the atmosphere.

Attempts to extract the emissivity information from space have been undertaken for
several decades, and the remotely sensed data do supply a practicable approach for the
investigation of emissivity on a wide spatial and temporal scale. However, because of
the inherent physical problems mentioned above, the uncertainty or non-unique solutions
appear during the process of LSE retrieval. Fortunately, along with the development of
remote sensing, several methods have been proposed for LSE retrieval. The aim of this
article is to analyse and compare these LSE retrieval methods and to provide technical
assistance when estimating LSE from space in remote sensing. The following sections
are organized as follows. In Section 2, some theoretical background is given, including
the definition and angular variation of emissivity, which is the basis for retrieving emis-
sivity from space. In Section 3, concrete methods are briefly recalled individually, from
empirical methods to physics-based methods. In Section 4, comparison and analysis of
different methods are given to assist the selection of methods in various circumstances.
In Section 5, a validation method of satellite-derived LSE is proposed to verify the accuracy
of the retrieved LSE. Finally, the outlook of this area is given in Section 6.

2. Basic theoretical background

2.1. Definition of emissivity

The emissivity, ε, at a given wavelength λ (units, µm) and temperature T (units, K), is
defined as the ratio of the radiance Rλ(T) emitted by a body at temperature T and the
radiance Bλ(T) emitted by a black body at the same temperature T , that is,
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3086 Z.-L. Li et al.

ελ(T) = Rλ(T)

Bλ(T)
, (1)

where Bλ(T) refers to Planck’s law, which is defined as

Bλ(T) = C1λ
−5

exp(C2/λT) − 1
, (2)

in which C1 and C2 are constants (C1 = 1.191 × 108 W µm4 sr−1 m−2,
C2 = 1.439 × 104 µm K).

It is worth noting that T here is the radiometric temperature, which is also called the
skin temperature because it corresponds to the radiation emitted from a depth which is of
the order of the penetration depth (Becker and Li 1995). For example, the penetration depth
is within a few millimetres in the TIR region (Wan 1999). Thus, it should be discriminated
from other definitions of temperature, e.g. thermodynamic or kinetic temperature (Becker
and Li 1995; Norman and Becker 1995).

Because emissivity varies with wavelength, the channel effective emissivity of a uni-
form surface at surface temperature T for channel i for a given finite wavelength range from
λ1 to λ2 is calculated as (Wan and Dozier 1996)

εi =
� λ2

λ1
fi(λ)ελ(T)Bλ(T)dλ� λ2

λ1
fi(λ)Bλ(T)dλ

, (3)

where fi(λ) is the sensor’s normalized spectral response function for channel i, which
satisfies

� λ2

λ1
fi(λ)dλ = 1. It is worth noting that surface broadband emissivity drives the

surface longwave radiative balance. Undoubtedly, surface broadband emissivity is critical
when dealing with the Earth’s radiation budget. Using only the narrowband emissivity of
a single band instead of the broadband emissivity may result in large errors in the cal-
culated longwave radiation (Wang et al. 2005). Ogawa et al. (2002, 2003) showed that
surface broadband emissivity could be estimated as a linear combination of the narrowband
estimates.

2.1.1. Case of a flat surface

The definition of emissivity mentioned above comes from the homogeneous isothermal sur-
faces. However, natural surfaces observed from space are usually heterogeneous, especially
in the situation of low spatial resolution. The spatial resolution varies from several metres to
kilometres, making it hard to find a ‘pure’ and ‘isothermal’ pixel. LST can only be defined
without any ambiguity for homogeneous surfaces at thermal equilibrium. Considering the
difficulties in relating the radiance of an ensemble of natural media at different temperatures
to a black body distribution at the same effective temperature, Norman and Becker (1995)
proposed two definitions: the ‘r-emissivity’ and the ‘e-emissivity’ for a flat surface.

(1) r-emissivity
For a flat pixel composed of N homogeneous subelements with a given spectral
domain and view angle, the ensemble emissivity (or r-emissivity) εr(θ , ϕ) along the
viewing zenith θ and azimuth angle ϕ of this pixel can be expressed as a function
of the emissivity of each subelement of the pixel:
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εr(θ , ϕ) =
N∑

k=1

akεk(θ , ϕ), (4)

where ak is the relative area of a subelement k normalized so that the sum of all ak

is unity and εk(θ , ϕ) is the emissivity of the subelement k. Here, r-emissivity is the
same as the effective emissivity defined by Becker and Li (1995). In other words,
from the viewpoint of scale, r-emissivity can be considered as scale invariant.

(2) e-emissivity
Assuming that there is an equivalent black body, which has an identical temperature
distribution with non-isothermal pixels, e-emissivity is defined as the ratio of the
radiance from the pixel to that from the equivalent black body for the same spectral
domain and view angle:

εe (θ , ϕ) =
∑N

k=1 akεk (θ , ϕ) Bi (Tk)∑N
k=1 akBi (Tk)

, (5)

where Bi (Tk) is the radiance of a black body as a function of the temperature of
subelement k (Tk). The e-emissivity depends on the temperature distribution and
the characteristics of the subelements.

2.1.2. Case of a rough surface

Surface emissivity is well defined for a homogeneous surface in thermal equilibrium.
However, for heterogeneous and non-isothermal flat surfaces, the definition is not unique.
Moreover, these definitions may not hold true for rough systems. Due to the multi-scattering
phenomenon, the effective emissivity always increases with the surface roughness. Based
on laboratory measurements, Salisbury, Wald, and D’Aria (1994) showed that most com-
mon terrestrial surfaces follow Kirchhoff’s law. Consequently, Becker and Li (1995) and
Chen et al. (2004) defined the directional emissivity in channel i of an opaque medium
in thermal equilibrium for a heterogeneous and non-isothermal rough surface from the
hemispherical-directional reflectivity (rh) via the bidirectional reflectivity (ρbi(θ , ϕ, θs, ϕs))
of this medium as

εi(θ , ϕ) = 1 − rh(θ , ϕ) = 1 −
2π�
0

π/2�
0

ρbi(θ , ϕ, θs, ϕs) cos θs sin θsdθsdϕs, (6)

where θ s and ϕs denote the zenith and azimuth angles of the solar beam, respectively.
One of the advantages of r-emissivity for flat and rough surfaces is its measurability

from space and its scale invariability. However, this type of definition makes the definition
of LST wavelength and viewing angle dependent and also dependent on the distributions
of surface temperature and emissivity within a pixel. As discussed in Becker and Li (1995),
the wavelength dependency of LST is negligible in the atmospheric window from 8 to
14 µm, considering the other uncertainties in the LST retrieval from space (Becker and Li
1995).

Another definition, called apparent emissivity, was proposed by Li, Strahler, and Friedl
(1999a) and Li and Wang (1999) to keep the Planck’s function and bidirectional reflectance
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3088 Z.-L. Li et al.

distribution function (BRDF)-derived emissivity unchanged. This apparent emissivity
(εapp) is defined by adding an apparent emissivity increment caused by the non-isothermal
surface to the r-emissivity to make the definition of LST independent of viewing angle and
wavelength:

εapp (θ , ϕ) =
N∑

k=1

akεk (θ , ϕ) + Kλ(T0)
N∑

k=1

akεk (θ , ϕ)�Tk , (7)

where T0 is a reference temperature that is independent of wavelength and viewing direc-
tion, �Tk is the temperature difference between the temperature of the subelement k and
the reference temperature T0, and Kλ(T0) = B′

λ(T0)/Bλ(T0), in which B′
λ(T0) is the first

derivative of Planck’s function Bλ at temperature T0. Although LST induced by the appar-
ent emissivity is independent of the viewing angle and wavelength, the apparent emissivity
itself is dependent on both the component temperature difference �Tk and the reference
temperature T0 and can be larger than unity if T0 is underestimated. Furthermore, the
apparent emissivity is not measurable from space because the reference temperature and
the temperature of subelements within a pixel must be known a priori.

One should note that all definitions of effective emissivity are ambiguous because both
the effective temperature and the effective emissivity are defined only from one ensemble
radiance emitted by a heterogeneous flat or rough non-isothermal surface. In fact, there
are many possibilities for defining two parameters (LST and ε) from only one equation
(ensemble radiance); the definition makes sense only if the defined parameters are measur-
able from space. Considering this criterion, r-emissivity defined by Equations (4) and (6)
for both heterogeneous flat and rough non-isothermal surfaces is recommended for the LST
and emissivity retrievals from space measurements.

2.2. Radiative transfer equation (RTE)

To retrieve emissivity from space, both the radiance emitted from a surface and the radi-
ance emitted by a black body at the same temperature need to be known simultaneously.
Consequently, the basic theoretical background of radiative transfer should be given first.

On the basis of the radiative transfer theory, under clear-sky conditions, the spectral
radiance at the TOA, Lλ(θ , ϕ), along the viewing zenith angle θ and the azimuth angle ϕ

can be written as (Chandrasekhar 1960; Lenoble 1985):

Lλ(θ , ϕ) = ελ(θ , ϕ)Bλ(Ts)τλ(θ , ϕ, ps)︸ ︷︷ ︸
Surface emission term

+
�

Bλ(Tp)
∂τλ(θ , ϕ, p)

∂p
dp︸ ︷︷ ︸

Atmospheric emission term

+
��

ρbλ(θ , ϕ, θ ′, ϕ′)Rat λ↓(θ ′, ϕ′)τλ(θ , ϕ, ps) cos θ ′ sin θ ′dθ ′dϕ′︸ ︷︷ ︸
Surface reflected downwelling atmospheric emission term

+ ρbλ(θ , ϕ, θs, ϕs)Eslλ↓(θs, ϕs)τλ(θs, ϕs, ps)τλ(θ , ϕ, ps)︸ ︷︷ ︸
Surface reflected downwelling solar beam term

,

(8)
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where λ represents the wavelength; ελ(θ , ϕ) is the effective emissivity at wavelength λ;
Bλ(Ts) and Bλ(Tp) are Planck’s function at surface temperature T s and atmospheric temper-
ature Tp at pressure level p, respectively; τλ(θ , ϕ, ps) and τλ(θ , ϕ, p) are the transmittance
from surface pressure level ps or from the pressure level p to the TOA along the view-
ing angle, respectively; ρbλ(θ , ϕ, θ ′, ϕ′) is the bidirectional reflectivity of the surface; θ ′

and ϕ′ are the incident zenith and azimuth angles; Rat λ↓(θ ′, ϕ′) = �
Bλ(Tp) ∂τλ(θ ′, ϕ

′, p→ps)
∂p dp

is the atmospheric downwelling radiance at directions θ ′ and ϕ′; θs and ϕs are the solar
beam directions; Eslλ↓(θs, ϕs) is the solar irradiance at the TOA; and τλ(θs, ϕs, ps) is the
transmittance from surface pressure level ps to the TOA along the solar beam direction.

Obviously, Equation (8) is mathematically unsolvable even if the remaining quantities
apart from emissivities and temperature are known. If the radiance is measured at N wave-
lengths, there will always be N + 1 unknowns, corresponding to the N emissivities (one
at each wavelength) and an unknown surface temperature, but only N equations. This fact
makes the retrieval process more troublesome.

2.3. Angular variation of emissivity

The observed anisotropy of land emittance is caused by a combination of two differ-
ent processes: the inherent anisotropic emissivity of terrestrial materials and the thermal
heterogeneity of complex, three-dimensional (3D) land targets. Many efforts have been
devoted to measure the directional emissivity of soil, leaves, and other natural surfaces.
An angular variation of emissivity has been observed by a number of scientists in the field
and in the laboratory (Becker, Ramanantsizehena, and Stoll 1985; Labed and Stoll 1991).
Commonly, the decrease in emissivity of natural surfaces is observed with increasing view
zenith angle in the TIR (8−4 µm) band (Sobrino and Cuenca 1999; Cuenca and Sobrino
2004; Hori et al. 2006). Experimental results show that different land surface materials have
different angular variations in emissivity; for example, arid bare soils and water generally
show the highest angular dependence, as depicted in Figure 1 (Snyder et al. 1998; Sobrino
and Cuenca 1999; Cuenca and Sobrino 2004). Hori et al. (2006) reported that the angular
variations in emissivity for smooth surfaces, such as bare ice, are quite consistent with the
spectra predicted by the Fresnel reflectance theory.

However, this angular behaviour observed at a local scale may not be always consistent
with that at a large scale. For example, green sparse shrubs exhibit a significant increase in
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Figure 1. Angular variation of absolute emissivity for several natural surfaces (adopted from
Sobrino and Cuenca (1999)).
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emissivity away from the nadir (Snyder et al. 1998), and the directional canopy emissivity
may show different behaviours at large scales due to the decreased proportion of reflective
soil in the viewing direction when the viewing zenith angle increases (Sobrino, Jimenez-
Munoz, and Verhoef 2005). It is worth noting that the structure of surface, which may
cause a change in the viewed proportions of the components, can result in a surprisingly
large angular dependence of the emissivity even with Lambertian components (Snyder and
Wan 1998).

Although the angular variation of emissivity may be negligible for most of the surfaces
when the view zenith angles are less than 60◦ (Prata 1993), the terrain may exaggerate the
impact of view angles because the combination of surface slope and sensor’s scan angle
may result in local viewing angles greater than 60◦ (Wan 1999).

2.4. Spectral variation of emissivity

2.4.1. Spectral behaviour of rocks

The structures of mineral molecules and the force constants between atoms, as well as the
long-range order of crystal lattices contribute to the spectral behaviour of rocks (Farmer
1974; Salisbury and D’Aria 1992). For typical rocks, the characteristics of spectral emis-
sivity in the TIR are mainly impacted by the aggregate silicon−oxygen stretching vibration
bands (reststrahlen bands) of the igneous minerals in broad emissivity troughs for increas-
ingly mafic rock types. Quartz reststrahlen bands, including strong asymmetric stretching
fundamentals between 8 and 10 µm and a weaker symmetric stretching fundamental
between 12.2 and 13.0 µm, may appear in many rocks. Emissivity of some rocks may
be dominated by the carbonate (–CO3) bending reststrahlen band near 11.2 µm. In addi-
tion, the maximum emissivity in the spectra of rocks is often associated with a Christiansen
feature, which was first described by Conel (1969) and occurs just prior to a fundamental
molecular vibration band. In the mid-infrared (MIR) region, the shape of the emissivity
spectrum is mainly dominated by quartz, carbonate, tremolite, etc. The recrystallized min-
erals in metamorphic rocks mean that the emissivity spectrum at 3–5 µm shows greater
variability. A more detailed description of the spectral behaviour of rocks and the spectral
library can be found in Salisbury and D’Aria (1992) and also in the Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER) Spectral Library (http://speclib.jpl.
nasa.gov/), which includes contributions from the Jet Propulsion Laboratory (JPL), Johns
Hopkins University (JHU), and the United States Geological Survey (USGS) (Baldridge
et al. 2009).

Figure 2 shows the spectral variation of mean and standard deviation of the emissivity
of a number of rocks computed from the ASTER Spectral Library at 3−5 µm and 8−4 µm.
The reststrahlen bands of quartz and carbonate can be observed even in the average spec-
trum. From this figure, one can remark that the smaller the mean emissivity is, the larger
the variation in the emissivity is, and vice versa.

2.4.2. Spectral behaviour of soils

Generally, soil composition is often dominated by quartz, which is both a common mineral
and resistant to weathering. Thus, the soil spectral behaviours at 3−5 µm and 8−14 µm
are both impacted by quartz, which has a strong reststrahlen band between 8 and 10 µm
and weaker bands between 12.2 and 13.0 µm and between 4.5 and 4.7 µm. In addition,
the carbonate bands are prominent in the MIR region, especially the strongest carbonate
doublet near 4.0 µm.
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Figure 2. General properties (mean and standard deviation) of the emissivity spectra for a number
of rocks in the ASTER spectral emissivity database. (a) 3–5 µm. (b) 8–14 µm.
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Figure 3. General properties (mean and standard deviation) of the emissivity spectra for a number
of soils in the ASTER spectral emissivity database. (a) 3−5 µm. (b) 8−14 µm.

The emissivity spectra of soils are still influenced by organic matter, which may reduce
the spectral contrast of the soils and introduce a broad emissivity minimum near 9.6 µm.
However, organic matter has a much smaller impact on the MIR region. Finally, soil mois-
ture can increase the emissivity of soils. Soil emissivity increases from 1.7% to 16%
when water content becomes higher (Mira et al. 2007), and a similar conclusion can be
found in many other studies (Urai, Matsunaga, and Ishii 1997; Xiao et al. 2003; Ogawa,
Schmugge, and Rokugawa 2006; Mira et al. 2010). A more detailed description of the spec-
tral behaviour of soils can be found in Salisbury and D’Aria (1992), in the ASTER Spectral
Library (Baldridge et al. 2009), and in the Moderate Resolution Imaging Spectroradiometer
(MODIS) UCSB (University of California, Santa Barbara) Emissivity Library at http://
icess.ucsb.edu/modis/EMIS/html/em.html.

Figure 3 shows the mean value and the standard deviation of the emissivity spectrum of
a number of soils computed from the ASTER Spectral Library at 3−5 µm and 8−14 µm.
The reststrahlen bands of quartz and carbonate can be clearly observed even in the averaged
spectrum.

2.4.3. Spectral behaviour of vegetation

Four emissivity spectra of vegetation from the ASTER Spectral Library are depicted in
Figure 4. As shown in this figure, green foliage exhibits low spectral contrast in both MIR
and TIR regions, especially conifers, which have a nearly uniformly high emissivity, except
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Figure 4. Emissivity spectrum for four types of vegetation in the ASTER spectral emissivity
database. (a) 3−5 µm. (b) 8−14 µm.

for a weak reststrahlen trough near 3.43 and 3.51 µm associated with the hydrogen−carbon
vibration bands. As for dry grass and some senescent foliages, the emissivity is evi-
dently reduced. Their cellulose gives the spectra double reflectance peaks between 10 and
12 µm and two minor absorption features between 8.5 and 9 µm. The emissivity peak near
3.4−3.5 µm is caused by volume scattering. Ribeiro da Luz and Crowley (2007) found that
some useful spectral information associated with leaf chemical constituents and structural
aspects may be detectable from the spectral behaviours of emissivity. However, remotely
measuring the subtle emissivity features of leaves remains a major technical challenge.

2.4.4. Spectral behaviour of water, ice, and snow

Although water is often assumed to have an emissivity of 1.0, it departs from black body
behaviour at 11.2 µm in the TIR region. As for ice, the shape of the emissivity spectra is
dominated by the volume scattering of the surface roughness in the MIR and TIR regions,
as shown in Figure 5. It should be noted that all emissivity spectra of water, ice, and snow
shown in Figure 5 are also extracted from the ASTER Spectral Library (http://speclib.jpl.
nasa.gov). Hori et al. (2006) found that the derived emissivities of snow and ice show a
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Figure 5. Emissivity spectrum for water, ice, and snow in the ASTER spectral emissivity database.
(a) 3−5 µm. (b) 8−14 µm.
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distinct spectral contrast at wavelengths between 10.5 and 12.5 µm, which suggests the
possibility of discriminating between snow and ice from space.

3. Estimation of surface emissivity from space

Radiance measured from space can cover a large spectral range, from the visible/near-
infrared (VNIR), MIR, and TIR to the microwave (MW) region. This radiance containing
the combined effects of surface and atmosphere can be used to infer the LSE. To date,
various methods have been proposed to this end. Several use the statistical relationships
between the measurements and the emissivities; others use reasonable assumptions or con-
straints on the basis of Planck’s function and the atmospheric RTE to solve the under-
determined problem or the ill-posed inversion process. In general, there are three distinctive
ways to estimate LSE from space: (1) semi-empirical methods (SEMs), (2) multi-channel
temperature/emissivity separation methods, and (3) PBMs. Although all of these meth-
ods can be used to get emissivity from space with their own advantages and limitations,
their applicability differs significantly. For example, several methods need to correct for the
atmospheric effects in advance. Before the analysis and the comparison of these methods,
a brief description of each method is given in the following sections.

3.1. Semi-empirical methods (SEMs)

This type of method estimates the LSE from the semi-empirical classification-based look-
up table or from the statistical relationship between the normalized difference vegetation
index (NDVI) derived from the VNIR and the emissivity in the TIR band. The representa-
tive methods are the classification-based emissivity method (CBEM) (Snyder et al. 1998;
Sun and Pinker 2003; Peres and DaCamara 2005) and the NDVI-based emissivity method
(NBEM) (Van de Griend and Owe 1993; Valor and Caselles 1996; Sobrino and Raissouni
2000).

3.1.1. Classification-based emissivity method (CBEM)

Generally, the CBEM is based on the use of conventional land-cover classification infor-
mation. The key point of this method is to properly classify the land surface and then to
assign the emissivity from classification-based look-up tables.

To determine the LST from MODIS TIR data using the split-window algorithm, Snyder
et al. (1998) first proposed this CBEM by considering the addition of three dynamic effects:
snow and water, senescence, and the different crop states. They developed an emissiv-
ity knowledge database (for 10.8−12.3 µm) using three different BRDF kernel models
(Li and Strahler 1992; Roujean, Leroy, and Deschamps 1992; Snyder and Wan 1998),
which have spectral coefficients derived from laboratory measurements of material sam-
ples and structural parameters derived from approximate descriptions of the cover type. The
hemispherical-directional reflectance and the emissivity are then obtained via integration of
BRDF over an angle range from 0◦ to 65◦ based on Kirchhoff’s law. After a series of com-
binatorial analysis, 14 distinct emissivity classes with similar properties are selected from
MODIS/International Geosphere-Biosphere Programme (IGBP) classes, in which some
biophysically distinct cover types with similar emissivity are combined, e.g. an evergreen
needle forest and a green deciduous forest, and some conventional classes showing differ-
ent emissivities are separated due to seasonal or dynamic state changes, e.g. growing crops
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and idle crop fields. These classes exhibit a good balance between the number of classes
and the emissivity accuracy. The analysis of the mean value and variations of emissivity
classes shows that eight of the 14 classes, covering almost 70% of the Earth’s land surface,
can be determined with sufficient accuracy to meet the goal of 1K accuracy required for
MODIS LST estimation. However, more information is needed to improve the emissiv-
ity accuracy for the other six classes (Snyder et al. 1998). Once the emissivity knowledge
database is developed, the LSE can be estimated directly from the MODIS/IGBP class with
the consideration of seasonal and dynamic states (Snyder et al. 1998).

Obviously, the mixture of several surface types within one pixel may influence the accu-
racy of LSE retrieval. In this case, the LSE can be estimated using a linear mixing model, as
in Equation (4). This method has already been applied to geostationary satellite data, such
as Meteorological Satellite (METEOSAT) Second Generation-1 (MSG) data (Peres and
DaCamara 2005; Trigo et al. 2008) and Geostationary Operational Environmental Satellite
(GOES) data (Sun and Pinker 2003).

Theoretically, the CBEM can produce accurate LSE products over the areas in which
land surfaces are accurately classified and where each class has well-known emissivities
(Gillespie et al. 1996). For example, the emissivities of water or of closed-canopy vegeta-
tion may be assigned reliably. In other words, the classification-based emissivity prediction
is thought to be accurate for most classes, especially for high-resolution remotely sensed
data (pure pixels). However, Snyder et al. (1998) pointed out several major difficulties in
using CBEM, such as the determination of surface wetness, the identification of senescent
vegetation, and the uncertainty of the dynamics of snow and ice surface states. All of these
difficulties and uncertainties may prevent an accurate estimation of the LSE for some of
the classes. Because the existence of water can increase the LSE of any nearby material,
night dew may become the primary source of error for low-emissivity classes. Furthermore,
there likely exists a large variation in the emissivity within some of the classes, and the
classification based on VNIR data is generally not well correlated with the LSE in the TIR
region. Thus, the CBEM method may be less reliable and can produce large errors for these
classes. For instance, the estimation of LSE using the CBEM for geologic substrates is
uncertain because the VNIR reflectances used to classify the land surfaces respond mainly
to hydroxyl ions and iron oxides, while the emissivities in the TIR band are mainly respon-
sive to the silicion−oxygen bond (Gillespie et al. 1996). In addition, LSE maps would have
inappropriate discontinuities or appear seamed or contoured because of the discontinuities
in the classification (Gillespie et al. 1996).

3.1.2. NDVI-based emissivity method (NBEM)

Within the framework of the project ‘Botswana Water and Surface Energy Balance
Research Program’, Van de Griend and Owe (1993) found a very high correlation between
the LSE in the band covering 8−14 µm and the logarithm of the NDVI, i.e.

ε = a + b ln(NDVI), (9)

where a and b are constants derived from regression analysis. Although this method is a
potentially powerful tool to estimate LSE at a pixel scale directly from space because NDVI
can be easily derived from the reflectances in VNIR bands, the relationship has been proved
to be quite dependent on the area studied, and the coefficients a and b obtained for one site
cannot be applied to other sites (Van de Griend and Owe 1993).
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Inspired by the work of Van de Griend and Owe (1993), using NDVI as a connection
to describe the ‘cavity effect’, Valor and Caselles (1996) proposed a theoretical method
derived from the model of Caselles and Sobrino (1989) to estimate the effective LSE for
a row-distributed rough system in which the observed radiance is the weighted sum of the
radiances coming from the ground, from the top, and from the side. In their method, the
effective LSE can be numerically expressed as the sum of the area-weighted emissivities
of each subcomponent and the cavity effect. Both weights and the cavity effect are func-
tions of the NDVI. However, this method requires a priori knowledge of some geometrical
parameters of the vegetation, such as height, width, and the separation between rows, which
limits the application of the method (Jimenez-Munoz et al. 2006). Furthermore, this method
ignores the high variability of soil emissivity in the 8−9 µm range. Consequently, the emis-
sivity at 8−9 µm cannot be accurately estimated with this method, whereas the emissivity
at 10−12 µm, where the soil and vegetation emissivities show little variation, can be (Coll
et al. 2003a). Although the model of Valor and Caselles (1996) has a theoretical basis, sev-
eral quantities, such as the emissivities and NDVIs for vegetation and soil, as well as some
geometrical parameters, are required a priori, which is usually not possible in practice.
In this sense, this method may still be categorized as being one of the SEMs.

Considering the complexity of method proposed by Valor and Caselles (1996), Sobrino
and Raissouni (2000) further developed an operational NDVI threshold method to derive
the LSE from space using the following criteria and formulae:

ελ =
{ aλ + bλρred

εvλPv + εsλ(1 − Pv) + dελ

εvλ + dελ

NDVI < NDVIs,
NDVIs < NDVI < NDVIv,

NDVI > NDVIv,
(10)

where aλ and bλ are channel-dependent regression coefficients, ρred is the reflectivity in
the red channel, and NDVIs is the NDVI corresponding to bare soil. εvλ and εsλ are the
vegetation and soil emissivities at wavelength λ, respectively. Both of them can be measured
in the field (Rubio, Caselles, and Badenas 1997; Rubio et al. 2003) or obtained from an
emissivity database (Baldridge et al. 2009). Pv is the fraction of vegetation that can be
derived either from the NDVI (Valor and Caselles 1996; Carlson and Ripley 1997; Sobrino
and Raissouni 2000) or from the variable atmospherically resistant index (VARIgreen) and
spectral mixture analysis (SMA) techniques (Sobrino et al. 2008), dελ

is the mean cavity
effect and can take values of 0.02 and higher from numerical simulation (Valor and Caselles
1996), and NDVIv is the full vegetation NDVI. NDVIs and NDVIv can be estimated from
the histogram for the entire scene (Dash et al. 2005; Sobrino et al. 2008).

When NDVI < NDVIs, the relationship between the emissivities and the red reflec-
tivities is assumed to be linear and the coefficients can be determined from laboratory
measurements of the soil spectra. However, Dash et al. (2005) argued that the correlation
for this linear relationship in remotely sensed data is not strong enough. Subsequently,
Sobrino et al. (2008) proposed the use of multispectral VNIR capabilities to improve this
relationship. When NDVIs < NDVI < NDVIv, the mean cavity effect dελ

can be expressed
as a linear function of Pv (Sobrino and Raissouni 2000). When NDVI > NDVIv, typical
constant values of εvλ = 0.985 and dελ

= 0.005 are used in TIR bands (Sobrino et al. 2008).
Because of its simplicity, the NDVI threshold method has already been successfully

applied to various sensors, e.g. the Advanced Very High Resolution Radiometer (AVHRR)
(Sobrino and Raissouni 2000), Digital Airborne Imaging Spectrometer (DAIS) (Sobrino
et al. 2002), MODIS (Sobrino, Kharraz, and Li 2003; Momeni and Saradjian 2007),
Thematic Mapper (TM) (Sobrino, Jimenez-Munoz, and Paolini 2004), Advanced Along
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Track Scanning Radiometer (AATSR), Spinning Enhanced Visible and Infrared Imager
(SEVIRI), and Airborne Hyperspectral Scanner (AHS) (Sobrino et al. 2008). Because only
VNIR bands, which always have a higher spatial resolution than TIR bands, are required,
emissivity with finer resolution can be mapped (Sobrino et al. 2008). Moreover, an accu-
rate atmospheric correction is not needed when estimating Pv. However, the main problem
with this method is the lack of continuity for emissivity values at NDVI = NDVIs and
NDVI = NDVIv because they are calculated using different functions (Sobrino et al. 2008).
From numerical analysis, Sobrino et al. (2008) pointed out that the NDVI threshold method
can provide acceptable results only in the 10–12 µm interval bands because the relationship
between the emissivity and the reflectivity for bare soil samples does not provide satisfac-
tory results in the 8.0–9.5 µm domain for some soil types. In addition, this method may
hold well only for mixed soil and vegetation areas, except for senescent vegetation, and
is not applicable for surfaces such as water, ice, snow, and rocks (Sobrino et al. 2008).
Furthermore, it requires a priori knowledge of the emissivities of soil and vegetation
(Sobrino and Raissouni 2000). The determination of soil emissivity may be the main source
of error in this method (Jimenez-Munoz et al. 2006).

3.2. Multi-channel TES methods

The multi-channel TES methods referred to here include a group of algorithms that
retrieve the LST and LSEs from the at-surface radiance. After introducing some reason-
able assumptions or constraints, these methods retrieve the LSEs directly from the emitted
radiance.

3.2.1. Emissivity spectrum character-based methods

This type of method determines the emissivity from the characteristics of emissivity spec-
tra. Therefore, the emissivity can be derived using several methods: by assuming that the
emissivity at a channel is time invariable, e.g. the two-temperature method (TTM) (Watson
1992); by assuming that the emissivity has a flat spectrum for specific wavelengths, e.g.
the grey-body emissivity (GBE) method (Barducci and Pippi 1996); by assuming that the
emissivity spectrum is smooth, e.g. the iterative spectrally smooth temperature emissivity
separation (ISSTES) method (Borel 1997); or by applying a priori knowledge about the
emissivity distribution range, e.g. the emissivity bounds method (EBM) (Jaggi, Quattrochi,
and Baskin 1992).

(1) GBE method
Assuming that the emissivity has a flat spectrum for wavelengths larger than 10 µm,
Barducci and Pippi (1996) suggested estimating the emissivity spectrum from
remotely sensed data using the flat characteristics of the emissivity spectrum in
some wavelength intervals. On the basis of the assumption that

dε

dλ
= 0 or εi = εj,

where εi denotes the emissivity at the ith channel, and neglecting or correcting for
atmospheric effects, the GBE method is used to find a solution of the emissivity
spectrum that minimizes the cost function E, which is defined as

D
ow

nl
oa

de
d 

by
 [

11
4.

14
3.

25
.1

51
] 

at
 0

7:
11

 2
8 

O
ct

ob
er

 2
01

7 



International Journal of Remote Sensing 3097

E =
N∑

i=1

[Ri − eiBi(t)]
2 with ei ∈ {e1, e2, · · · , eM } , M < N , (11)

where Ri = εiBi(T) is the radiance emitted by the surface that is observed in channel
i, Bi(T) refers to the emitted radiance of a blackbody at temperature T , N is the
number of channels used, and e and t are estimates of ε and T , respectively. The
values e1 to eM are M different emissivity values by which the emissivity spectrum
e can be represented. Provided that M is less than N , i.e. there are at least two
channels having the same values of emissivities in N channels, Equation (11) gives
a well-determined solution for e and t (Barducci and Pippi 1996).

It should be noted that the application of the GBE method to space measure-
ments requires correcting for atmospheric effects and also requires that at least two
channels have the same emissivity but not necessarily the grey body. Because it
is easier to find at least two channels with the same emissivity in hyperspectral
data than in multispectral data, this method is thought to be more applicable for
hyperspectral TIR data.

(2) TTM
Because the measured radiance emitted by a surface is dependent on both emissiv-
ity and temperature, if a surface with time-invariant emissivities is observed using
N channels at two different temperatures (e.g. at two different times, one in day-
time and another in night-time), there are 2N equations with N + 2 unknowns (N
channel emissivities and two temperatures). Provided that N ≥ 2 and the atmo-
spheric effects are known or can be accurately estimated, N emissivities and two
temperatures can be simultaneously determined from 2N equations (Watson 1992).

In addition to accurate atmospheric corrections, this method requires an accu-
rate geometric registration of the data acquired at two different times (Watson 1992;
Gillespie et al. 1996). It has been shown that the impact of the misregistration on
the LSE error is small for homogeneous areas but large for heterogeneous areas
(Wan 1999). Because the emissivities at two different times are required to be time
invariant for the TTM, a change in the satellite viewing angle will cause a change
in the LSE, consequently violating the assumption of time-invariant emissivity and
decreasing the accuracy of the TTM. The use of geostationary satellite data avoids
these two problems (misregistration and change in viewing angle). With high tem-
poral resolution and a fixed viewing angle for a given pixel, the geostationary
satellite is expected to provide an adequate implementation of the TTM. Faysash
and Smith (1999, 2000) and Peres and DaCamara (2004) applied this method to
GEOS and MSG/SEVIRI data, respectively. They showed that LST and LSEs could
be obtained with reasonable accuracy for most cases, for example the averaged
biases and root mean square errors (RMSEs) of LSE range from 0.001 to 0.101 and
from 0.028 to 0.045, respectively, while those of LST range from 0.0 to 0.5 K and
from 0.8 to 2.5 K, respectively. It should be noted that the solution of this method
is sometimes unstable and dependent on the initial values.

Although TTM can directly estimate the spectral emissivity without any assump-
tion about the spectral shape, which is its primary advantage over other methods,
it is sensitive to noise (Watson 1992; Gillespie et al. 1996; Caselles et al.
1997). Peres and DaCamara (2004) pointed out that increasing the number of
observations and/or the temperature difference improves the retrieval accuracy, but
this improvement is limited for larger measurement errors.

D
ow

nl
oa

de
d 

by
 [

11
4.

14
3.

25
.1

51
] 

at
 0

7:
11

 2
8 

O
ct

ob
er

 2
01

7 



3098 Z.-L. Li et al.

(3) ISSTES method
Hyperspectral TIR data provide much more detailed information on the atmosphere
and land surface. Taking into account the fact that the surface emissivity spectrum is
smoother than the atmospheric spectral features in hyperspectral TIR data, different
methods have been proposed to estimate LST and LSE from hyperspectral data
(Borel 1997, 1998). From Equation (8), neglecting the solar contribution in the
TIR band and denoting Ratλ↑, Ratλ↓ as the upwelling and downwelling atmospheric
radiances at wavelength λ, respectively, the emissivity can be calculated using the
a priori temperature:

ελ (T) = Lλ − Ratλ↑ − Ratλ↓τλ

(Bλ(T) − Ratλ↓)τλ

. (12)

If the surface temperature (T) deviates from its actual value, the atmospheric spec-
tral features appear in its corresponding retrieved emissivity spectrum as shown in
Equation (12). Thus, if T is not accurately estimated, the corresponding emissivity
spectrum retrieved from Equation (12) exhibits atmospheric spectral features; i.e.
there are some sharp convexities or concavities caused by the atmospheric absorp-
tion lines in the estimated emissivity spectrum. For three neighbouring channels,
i – 1, i, and i + 1 in the hyperspectral TIR band, Borel (1997, 1998) employed a
spectral smoothness (SM) defined as:

SM1 =
∑

i

(
εi − εi−1 + εi + εi+1

3

)2

. (13)

Here, SM1 is one of the definitions of spectral smoothness. Other definitions of SM
will be listed below. Borel also iteratively found the optimal estimate of LST corre-
sponding to the minimum of the spectral smoothness (Equation (13)). Once the LST
is determined, the emissivity spectrum can be easily derived from the hyperspectral
TIR data using Equation (12).

Different formulations for SM, including the first and second derivative crite-
ria for the spectral smoothness criterion, have been proposed (Borel 1997, 1998;
Kanani et al. 2007; OuYang et al. 2010). Some of them, numbered 2–4, are listed
below:

SM2 =
� ( ∂ε

∂λ

)2

∝
∑

i

(εi+1 − εi)
2,

SM3 =
� ( ∂2ε

∂λ2

)2

∝
∑

i

(εi+1 − 2εi + εi−1)
2, (14)

SM4 =
∑

i

(
εi − εi−1 − (εi+1 − εi−1)

λi − λi−1
(λi − λi−1)

)2

.

All of these statistically lead to the same performance for hyperspectral TIR data,
implying that the performance is not sensitive to the choice of smoothness func-
tion. Ingram and Muse (2001) analysed the sensitivity of this type of method
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to algorithmic assumptions and measurement noises. They pointed out that the
RMSE of emissivity resulting from the algorithmic assumptions is negligible for
a typical material and is only about 0.0004 if there were no errors in the radi-
ance at ground level. It turns out that the accuracy of the retrieved emissivity
depends significantly on the signal-to-noise ratio (SNR). At SNR = 1200:1, the
RMSE (bias) of the surface emissivity is in the range of 0.002−0.004 (−0.0004 to
+0.0008), and, at SNR = 240:1, the accuracy of the emissivity is degraded to
RMSE = 0.015–0.025 and Bias = −0.009 to +0.015. Borel (2008) pointed out that
this type of method suffers from a shift of the spectral position and change in the full
width at half maximum (FWHM). He demonstrated that a small spectral position
shift (1/20th of the wave centre spacing) can produce large retrieval errors. This
method also requires atmospheric compensation. However, as the hyperspectral IR
data can provide enough information to extract the atmospheric information, Borel
(2008) coupled the in-scene atmospheric correction (ISAC) algorithm proposed
by Young, Johnson, and Hackwell (2002) with the spectral smoothness technique
to generate LST and LSEs from airborne hyperspectral data without knowing the
atmospheric state.

(4) Emissivity bounds method (EBM)
For a given measured radiance in a reasonable range of emissivity (ε), a locus of
points (T , ε) can be traced for each channel. There are therefore N loci for N mea-
sured channels. Because there is only one actual temperature, T , for a given pixel,
T must be the same for all N channels. Taking into account the possible range of
emissivity for a given situation, for example the emissivity in any channel cannot
be larger than unity, the possible solutions of T can be limited to a narrow range,
and emissivity limits for each channel are then specified by the intersection of the
locus of this channel and the range of possible T as described by Jaggi, Quattrochi,
and Baskin (1992).

It is worth noting that there is no assumption introduced in the development of
this method, and the more accurate the knowledge of the emissivity distribution
range, the better the performance of this method. However, this method provides
only a possible range of LST and LSE.

3.2.2. Reference channel method (RCM)

RCM was first developed by Kahle, Madura, and Soha (1980). This method assumes that
the emissivity in one channel has a constant value for all pixels. Provided that the atmo-
spheric effects are known or can be accurately estimated, for each pixel the LST can be
derived from the measured radiance in this reference channel using the known emissivity.
This LST is then used in Equation (12) to derive emissivity values for the remaining
channels.

Although RCM is the simplest method for the emissivity retrieval from space, it suffers
from some limitations. First, it is difficult to find a unique emissivity value that is appro-
priate for all surface materials in one reference channel. For example, the mean emissivity
for vegetation is about 0.98 compared to 0.95 for most silicate rocks at wavelengths larger
than 12 µm (Gillespie et al. 1996). An uncertainty of 1% in the emissivity in this reference
channel can result in an error of about 0.5 K in LST and emissivity errors of about 1–2%
in other channels (Li et al. 1999b). Second, because the emissivity in the reference channel
is assigned as a constant value for all pixels, there is no emissivity spatial information in
this channel. Furthermore, the emissivities derived for adjacent channels are significantly
affected by the constant value of emissivity in this channel and appear to be very noisy
(Hook et al. 1992).

D
ow

nl
oa

de
d 

by
 [

11
4.

14
3.

25
.1

51
] 

at
 0

7:
11

 2
8 

O
ct

ob
er

 2
01

7 



3100 Z.-L. Li et al.

3.2.3. Normalization emissivity method (NEM)

This method was first described by Gillespie (1985) and used by Realmuto (1990). It
assumes a constant emissivity in all N channels for a given pixel, which enables N tem-
peratures to be calculated for each pixel from their measured radiances, provided that the
atmospheric quantities involved in the RTE are known. The maximum of those N temper-
atures is considered to be the LST and used to derive emissivities for the other channels
using Equation (12), as is done with RCM. Mushkin, Balick, and Gillespie (2005) applied
this method to the Multispectral Thermal Imager (MTI) data and assumed different con-
stant emissivity in the MIR and TIR bands. They found that the retrieved accuracy with
NEM is consistent with that reported for the ASTER TES method described below. Coll
et al. (2001) and Coll et al. (2003b) proposed an improved NEM called the adjusted nor-
malized emissivity method (ANEM). In their work, the field emissivity measurements were
used to adjust the initial maximum emissivity, then NEM was performed. However, because
ANEM requires in situ measurements, it is of limited use for exploration studies (Coll et al.
2003b).

NEM is an improvement of RCM as the channel with the maximum emissivity can
be different in NEM for different materials. It is recommended by Li et al. (1999b) and
selected by Gillespie et al. (1998) as one of the modules in the TES algorithm applicable to
ASTER data.

3.2.4. TES method

TES is an algorithm initially developed for retrieving LST and LSE from ASTER images
(Gillespie et al. 1998; Abrams 2000). This algorithm hybridizes three mature modules:
NEM, spectral ratio (SR), and min–max difference (MMD).

TES first uses the NEM module to estimate the initial surface temperature and the
normalized emissivities from the atmospherically corrected radiances at ground level. The
SR module is subsequently used to calculate the ratio of the normalized emissivities to their
average:

βi = εi

1
N

∑N
j=1 εj

(N is the total number of TIR channels). (15)

Although the SR β cannot directly provide the actual emissivity, it has been shown to
describe the shape of the emissivity spectra well even if the surface temperature is roughly
estimated. Finally, on the basis of SR, the MMD module is used to find the spectral contrast
in N channels:

MMD = max(βi) − min(βi). (16)

To recover the actual values of the emissivities, an empirical relationship between the
minimum emissivity (εmin) in the N channels and MMD is established:

εmin = a′ + a∗MMDa∗∗, (17)

with a′, a*, and a** as the sensor-dependent coefficients. a′ = 0.994, a* = −0.687 and
a** = 0.737 are found for the ASTER sensor using the laboratory and field emissivity
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spectra. Once εmin is estimated, the emissivities in other channels can be straightforwardly
derived from the SR β i using

εi = βi

(
εmin

min (βi)

)
(i = 1, . . . , N), (18)

and LST can be refined and estimated.
This method is operationally applied to the ASTER TIR data for recovery of LST and

LSEs. Numerical simulation demonstrates that the TES algorithm can recover temperature
within about ±1.5 K and emissivities within about ±0.015 for ASTER data if the atmo-
spheric effects are accurately corrected for (Abrams 2000). More detailed information on
the TES algorithm can be found in Gillespie et al. (1996, 1998).

The main assumption of TES is that the empirical relationship between the minimum
emissivity and the spectral contrast, i.e. Equation (17), holds true for the entire gamut of
surface materials (Gillespie et al. 1996). Gillespie et al. (1996) tested this assumption and
reported it to be valid for most surfaces. However, Payan and Royer (2004) found that
metals do not obey this empirical relationship. However, natural surfaces are mainly com-
posed of water, soils, vegetation, and snow rather than metals. Therefore, the violation of
the empirical relationship by metals does not degrade the retrieved accuracy any more than
when dealing with Earth observation data using the TES method. Because of its simplic-
ity and the lack of any need for a priori knowledge of the surface, the TES method has
already attracted more and more attention (Schmugge et al. 2002; Dash et al. 2005). At the
same time, some changes in the original TES method are proposed to improve the retrieval
accuracies, including integrating broadband emissivity in the iterative algorithm for high
contrast emissivity surfaces (Payan and Royer 2004), adjusting radiances with respect to
channel 13 (10.6 µm) of ASTER for low contrast surfaces (Coll et al. 2007), removal of
the iterative correction for downwelling irradiance and the threshold test for spectral con-
trast (Gustafson, Gillespie, and Yamada 2006), and the inclusion of a water adjustment and
compensation for partially vegetated surfaces by a fractional vegetation cover adjustment
(Hulley and Hook 2009b).

The main advantages of the TES algorithm are (1) it provides LST and LSE simulta-
neously from the atmospherically corrected multispectral TIR data at ground level; (2) it
refines the values of the maximum emissivity used in the NEM, pixel by pixel and conse-
quently improves the NEM approach; (3) it is a priori applicable to any kind of natural
surface, especially for geologic surfaces (Gillespie et al. 1998; Sobrino et al. 2008).
However, the main sources of uncertainty in estimating LST and LSEs using TES con-
sist of (1) the atmospheric compensation especially for the humid atmosphere. Sabol et al.
(2009) reported that the atmospheric compensation is insufficient and retrieval errors may
be larger than anticipated under unusual atmospheric conditions with anomalously high
humidity or spatial variability; (2) the empirical relationship of Equation (17). This type of
uncertainty is more serious for grey bodies than for high MMD, where radiometric noise
has a significant impact on the apparent MMD (Gillespie et al. 1998; Coll et al. 2007), thus
the accuracy of TES is expected to decrease for surfaces with low spectral contrast, as is the
case of agricultural areas; and (3) compensation for reflected sky irradiance and sensor cal-
ibration (Gillespie et al. 1998; Jimenez-Munoz et al. 2006; Sobrino et al. 2008). It should
be noted that the TES algorithm requires at least three TIR bands located in the atmospheric
windows; it cannot be applied to most operational sensors (Sobrino et al. 2008).
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3102 Z.-L. Li et al.

3.2.5. Temperature-independent spectral indices (TISI) method

TISI was first proposed by Becker and Li (1990a) and was used to perform spectral anal-
ysis in the TIR region. This method is based on the power-law approximation of Planck’s
function, Bi(T):

Bi(T) ∼= αiT
ni , (19)

where αi and ni are channel-specific constants for a reasonable range of temperature T .
Using this approximation and assuming that the atmospheric corrections have been
accurately performed, the TIR channel radiance Ri observed at ground level can be
approximated as:

Ri = αiT
ni
gi = εiαiT

ni
s + (1 − εi)Rati↓ = εiαiT

ni
s Ci, (20)

where Tgi is the brightness temperature measured at ground level in channel i, εi is the
channel emissivity, Ts is the surface temperature, Rati↓ is the downwelling atmospheric
radiance in channel i, and Ci is a correction factor that compensates for the effect of the
atmospheric reflected radiance:

Ci = 1 − Rati↓
/

Bi (Ts)

1 − Rati↓
/

Bi

(
Tgi

) . (21)

By taking the product of the N channel measurements described in Equation (20) to the
power dk (k = 1, . . . , N) such that:

N∑
k=1

dknk = 0, (22)

the surface temperature T s is eliminated in the product.
Defining the temperature-independent spectral index (TISI) as:

TISI =
N∏

k=1

C−dk
k

N∏
k=1

Tdk nk
gk =

N∏
k=1

(Ckαk)
−dk

N∏
k=1

Rdk
k , (23)

and TISIE (temperature-independent spectral indices of emissivity) as:

TISIE =
N∏

k=1

ε
dk
k , (24)

it is easy to show that TISI is almost independent of surface temperature and that

TISI = TISIE. (25)

Because Ci in Equation (21) theoretically depends on the unknown surface temperature, to
calculate TISI from the definition in Equation (23), the surface temperature must be esti-
mated by an assumed initial emissivity (Nerry, Petitcolin, and Stoll 1998) using an iterative
approach (Dash et al. 2005) or substituted by the highest ground brightness temperature
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among all channels used for a given pixel (Li et al. 1999b; Li, Petitcolin, and Zhang 2000).
It has been shown that the difference between TISI estimated using the approximate surface
temperature and TISIE is small (<1%) (Becker, and Li 1990a; Nerry, Petitcolin, and Stoll
1998).

Becker and Li (1990a), Li and Becker (1990), and Li et al. (1999b) demonstrated that
TISI is nearly independent of surface temperature and is a pure combination of channel
emissivities. The two most important properties of TISI are its ability to be tailored to
weight interesting spectral channels more heavily than others because the N ‘di’ param-
eters are determined with only one equation (Equation (22)) and that TISIs are quite
complementary to NDVI and can lead to stronger results if used together rather than
separately.

According to the general definition of TISI given by Equation (23), taking di = 1 and
using the channel radiance Ri, Becker and Li (1990a) and Li et al. (1999b) defined a two-
channel TISI, TISIij, for two channels i and j as:

TISIij = C
ni
/

nj

j

Ci

α
ni
/

nj

j

αi

Ri

R
ni
/

nj

j

. (26)

Taking Ts ≈ Tgj, Equation (26) becomes:

TISIij ≈ Bi

(
Tgi

)− Rati↓
Bi

(
Tgj

)− Rati↓
. (27)

They showed mathematically that:

TISIij ≈ TISIEij with TISIEij = εi

ε
ni
/

nj

j

. (28)

3.3. Physically based methods (PBMs)

The methods reviewed above generally assume that the atmospheric effects on the radiances
measured at the TOA have been accurately corrected for or that the radiances are measured
at ground level. As far as the estimation of LST and LSE from space measurements is
concerned, in addition to the unknown LST and LSEs, there are some additional unknowns
due to the spectral absorption and emission in the intervening atmosphere. With N spectral
measurements from space, the solution for the temperature and the N spectral LSEs is
underdetermined. In this section, we will review three of the early PBMs that have been
fairly widely used to approach this problem using various physically based assumptions
or constraints. These methods include the TISI-based method (Becker, and Li 1990a; Li
and Becker 1993; Li, Petitcolin, and Zhang 2000), the physics-based day/night operational
method (Wan and Li 1997), and the two-step physical retrieval method (TSRM), which uses
the principal component analysis (PCA) technique to decrease the number of unknowns
(Ma et al. 2000, 2002; Li et al. 2007).

3.3.1. TISI-based method

On the basis of the concept of the two-channel TISI, Li and Becker (1990) and Li,
Petitcolin, and Zhang (2000) have proposed and improved an active/passive method to
retrieve the surface emissivities using the Sun as an active source. In the MIR channel
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3104 Z.-L. Li et al.

(around 3.7 µm), the radiance emitted by the land surface itself and the reflected radi-
ance due to Sun’s irradiation during the day are of the same order of magnitude if the
surface reflectance in this channel is about 0.1, and there is no solar reflection at all at
night. Therefore, the general idea of this method is to extract the bidirectional reflectiv-
ity ρbi(θ , ϕ, θs, ϕs) in the MIR channel by eliminating the emitted radiation during the day
with that during the night due to a particular intercomparison between day and night TISI.
Choosing channel i as any channel in MIR (3−5 µm) and channel j as any channel in TIR
(10−13 µm) and assuming that TISIEd

ij = TISIEn
ij (superscripts d and n denote daytime

and night-time, respectively), Becker and Li (1990a) and Li, Petitcolin, and Zhang (2000)
proposed to derive ρbi(θ , ϕ, θs, ϕs) using:

ρbi(θ , ϕ, θs, ϕs) = (TISId
ij − TISIn

ij)(Bi(Tn
gj) − Rd

ati↓ − Rsli↓)

Ei cos θsτi(θs, ϕs)
, (29)

where Rsli↓ is the channel downwelling solar diffusion radiation over the hemisphere
divided by π , Ei is the solar irradiation at the TOA in channel i, and τ i is the effective
transmittance of the atmosphere in channel i.

As indicated by Equation (29) and reported by Li, Petitcolin, and Zhang (2000), the
bidirectional reflectivity in channel i can be retrieved directly from space measurements
provided that all of the following four conditions are fulfilled.

(1) The infrared radiometer on board the satellite has at least two channels, one within
the 3−5 µm window and the other within the 10−13 µm window.

(2) Multi-temporal data in both MIR and TIR channels should be available, at least one
set of data during the day and the other at night.

(3) The appropriate emissivity ratios are assumed to be the same or do not change
significantly between day and night (the difference of the appropriate emissivity
ratios is less than 0.01), i.e. TISIEd

ij = TISIEn
ij.

(4) The channel radiance L at ground level can be obtained with good accuracy from
the channel radiance at the TOA after atmospheric corrections.

Assuming that the surface is Lambertian in the MIR channel or that the ρbi in the
MIR channel at the two data acquisition times during the day are the same, Goita and
Royer (1997) extended the TISI-based method developed by Becker and Li (1990a) to be
applicable for two consecutive data sets acquired during the day. They also proposed an
alternative method to estimate ρbi from Equation (29) but with TISIEn

ij estimated by the
ratio of the atmospherically corrected radiances in the MIR and TIR channels during the
day instead of using TISIEn

ij calculated from the night measurements. The empirical linear
relationship between TISIEn

ij and the ratio of the radiances in the MIR and TIR channels
during the daytime was established from theoretical simulations computed with the acquisi-
tion conditions and a reference emissivity database (Goita and Royer 1997). Although this
alternative method gives less satisfactory results than others, only one daytime image is
required.

To retrieve the directional emissivity, εi(θ , ϕ), from the bidirectional reflectivity
ρbi(θ , ϕ, θs, ϕs) extracted by Equation (29), three methods have been proposed. The first
is to use an angular form factor fi(θ , ϕ, θs, ϕs), which was introduced by Li, Petitcolin, and
Zhang (2000) to describe how a bidirectional reflectivity differs from that of a Lambertian
reflector. With the help of this angular form factor, the directional emissivity in channel i
can be estimated by:
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εi(θ , ϕ) = 1 − π ρbi(θ , ϕ, θs, ϕs)

fi(θ , ϕ, θs, ϕs)
, (30)

in which fi(θ , ϕ, θs, ϕs) is inferred from that in the shortwave channels assuming the same
shape of the angular form factors in these two bands. The second is to first use the semi-
empirical phenomenological model of Minnaert (1941), modified by Li, Petitcolin, and
Zhang (2000) and Petitcolin, Nerry, and Stoll (2002), to describe the angular variations of
the bidirectional reflectivity by:

ρbi(θ , ϕ, θs, ϕs) = ρ0 cosk−1 θ cosk−1 θs [1 + q sin θ sin θs cos(ϕ − ϕs)] , (31)

where ρ0 is the reflectance for overhead Sun and nadir observation and k is a parameter
varying typically between 0 and 1. The anisotropic factor q is positive if backscatter-
ing is important and negative when forward scattering is dominant. Once a series of
ρbi(θ , ϕ, θs, ϕs) are retrieved from the same type of surface at different view and illumina-
tion conditions, the parameters ρ0, k, and q in Equation (31) can be obtained. Subsequently,
based on Equation (6) and taking the integration over the hemisphere of the bidirectional
reflectivity described by Equation (31), the directional emissivity in channel i is derived
from:

εi(θ ) = 1 − 2π

k + 1
ρ0 cosk−1 θ . (32)

The third is to use a kernel-driven bidirectional reflectivity model, the RossThick–
LiSparse–R model, to describe the non-Lambertian reflective behaviour of land surface
in MIR as being the same as that in VNIR regions (Roujean, Leroy, and Deschamps 1992;
Wanner, Li, and Strahler 1995; Lucht and Roujean 2000):

ρb(θ , θs, ϕr) = kiso + kvolfvol(θ , θs, ϕr) + kgeofgeo(θ , θs, ϕr), (33)

where ϕr is the relative azimuth angle, kiso is the isotropic scattering term, kvol is the coef-
ficient of the Roujean’s volumetric kernel fvol, and kgeo is the coefficient of the LiSparse–R
geometric kernel fgeo. The analytical parameterization of fvol and fgeo can be found in
Roujean, Leroy, and Deschamps (1992), Lucht (1998), and Jiang and Li (2008). If a series
of ρbi(θ , ϕ, θs, ϕs) with different angular configurations are retrieved from Equation (29),
the parameters kiso, kvol, and kgeo in Equation (33) can be obtained. Knowing these three
parameters and using Equation (6), Jiang and Li (2008) demonstrated numerically that the
directional emissivity in the MIR channel could be expressed to a good approximation as:

εi(θ ) = 1 − πkiso + kvol [0.0299 − 0.0128 exp(θ/21.4382)]

+ kgeo

[
2.0112 + 0.3410 exp

[
−2

(
θ − 90.9545

68.8171

)2
]]

.
(34)

Once the directional emissivity in channel i is known, the directional emissivity in channel j
is easily derived from the definition of TISI with the assumption that TISIEd

ij = TISIEn
ij, i.e.

εj(θ , ϕ) =
(

εi(θ , ϕ)

TISIn
ij

)nj/ni

. (35)
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3106 Z.-L. Li et al.

Based on an analysis of the sensitivity of TISI and emissivities to different error sources,
Nerry, Petitcolin, and Stoll (1998) reported that the errors due to the approximations and the
instrumental error do not exceed 1%. Li et al. (1999b) showed that TISI may be sensitive to
the uncertainties in atmospheric corrections. Nevertheless, the impacts of the uncertainties
in atmospheric corrections on the emissivities are less serious than those on the temperature
itself. The use of an approximate (standard) atmosphere instead of an actual atmosphere
may lead to 3% or smaller errors in LSE and 0.5 K in LST using the split-window method
(Becker and Li 1990b; Li and Becker 1993).

It is worth noting that the TISI-based method does not need any a priori information
on the surface and can be applied to any surfaces, even those with strong spectral dynam-
ics. Due to the fact that this method is based on multi-temporal data (a series of retrieved
ρbi(θ , ϕ, θs, ϕs)), which require accurate image co-registration, the retrieval errors may be
large otherwise (Dash et al. 2005). Additionally, the surfaces must be observed under sim-
ilar observation conditions, e.g. view angle, during both day and night (Dash et al. 2005).
However, Petitcolin, Nerry, and Stoll (2002) argued that TISI has mild angular dependence
and remains stable over several weeks. Furthermore, the method needs both MIR and TIR
data at the same time (Sobrino and Raissouni 2000). All of these problems may limit its
usage in the retrieval of emissivity from space.

3.3.2. Physics-based day/night operational (D/N) method

The physical methods usually face more unknowns simultaneously; in other words, the
physical methods need more channels than other methods. To simultaneously retrieve LSEs
and LST without an accurate a priori knowledge of emissivity information and atmospheric
parameters, Wan and Li (1997) proposed a physics-based retrieval method using day/night
pairs of combined MIR and TIR data. The main purpose of this method is to retrieve LST
and LSEs in semi-arid and arid regions where the surface emissivity varies spatially over
a wide range (Wan 1999). Based on the three assumptions of surface optical properties,
(1) the surface emissivity does not significantly change in the daytime/night-time in sev-
eral days unless rain and/or snow occurs during the short period of time, (2) the angular
form factor fi(θ , ϕ, θs, ϕs) defined in Equation (30) has very small variations (<2%) in
the wavelength range of interest in MIR, and (3) the Lambertian approximation of sur-
face reflection for downwelling diffuse solar irradiance and atmospheric thermal irradiance
does not introduce significant error in the 3−14 µm region, the radiance measured by band
i (Equation (8)) can be expressed as:

Li = τ1iεiBi(TS) + Rati↑ + Rsli↑ + 1 − εi

π
[τ2if μ0Ei + τ3iRsli↓ + τ4iRati↓], (36)

where Rati↑ and Rsli↑ are the thermal path radiances resulting from the atmosphere and
scattering of solar radiation, respectively, µ0 is the cosine of the solar zenith angle, and
τji, j = 1, . . . , 4 are band effective transmission functions for the corresponding terms.
To reduce the uncertainties in the initial atmospheric conditions, two variables are used to
modify the initial atmospheric profiles. One is the air temperature at the surface level (T a)
and the other is the total atmospheric column water vapour (CWV). With two measurements
(day and night) in N bands, the numbers of unknowns are N + 7 (N band εis, 2 TSs, 2 T as,
2 CWVs, and 1 f ). To make it possible to solve the equations, the number of observations
(2N) must be equal to or greater than the number of unknowns (N + 7), which makes
N ≥ 7. Because 2N equations are non-linear, a statistical regression method is used to give
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the initial values of the N + 7 unknowns. Next, a numerical algorithm, such as the least
squares fit (χ2) method, is used to find an accurate solution for N + 7 unknowns from 2N
measurements (2N equations) (Wan and Li 1997). In the day/night algorithm, a look-up
table of atmospheric parameters is also employed for high efficiency. More details on the
MODIS D/N method can be found in Wan and Li (1997), Wan (2008), and Wan and Li
(2010).

It is worth noting that in the D/N algorithm

(1) Because the radiance measured in the MIR channel during the daytime includes the
contribution of the Sun’s irradiation or solar irradiance, the correlation of 2N equa-
tions is significantly decreased by introducing the MIR channels, and making the
solution of 2N equations stable, accurate, and possible. In this case, LSTs and LSEs
can be accurately determined even though the LSTs are equal at the two acquisi-
tion times (daytime and night-time); however, this is not the case for using only the
measurements in TIR channels in which case the difference of LST between day
and night must be large enough.

(2) The number of unknowns in the 2N equations is decreased by assuming that
the angular form factor is the same for all the MIR channels, leading to a
well-determined solution for the 2N equations.

(3) The retrieved accuracy of LSTs and LSEs is largely improved by introducing two
variables (T a and CWV) to take into account the uncertainties in the atmospheric
profiles.

(4) Because the existence of water increases the emissivity of any material (Snyder
et al. 1998), night dew may be the primary source of error for LSE retrieval,
especially for low emissivity surfaces in dry areas. However, considering the low
frequency of dew occurrence in the semi-arid and arid regions, dew is not a serious
problem, which may only slightly complicate the process (Wan 1999).

(5) The MODIS D/N method does not require the 12-hour interval in the mea-
surements (day and night); as long as the surface emissivity does not change
significantly, daytime and night-time data collected over several days are also
appropriate (Wan 1999).

3.3.3. Two-step physical retrieval method (TSRM)

Although MODIS is not specifically designed as a sounding instrument, it has 16 bands in
the MIR and TIR regions, several of which match the corresponding bands on the High-
Resolution Infrared Radiation Sounder (HIRS) provided by ITT (International Telephone
& Telegraph) Exelis (McLean, VA, USA). MODIS can be therefore used to extract atmo-
spheric profiles (Menzel et al. 2006). However, due to the coupling between the atmospheric
information and the surface temperature through both the surface emissivity and the atmo-
spheric transmittance, the retrieval process is a difficult task. Ma et al. (2000) made a first
attempt to simultaneously retrieve LST and atmospheric temperature−humidity profiles
by assuming that emissivities are constant in the MIR and TIR regions, respectively, and
by assuming that the solar contribution in the MIR can be ignored. Nevertheless, these
assumptions may degrade the accuracy of atmospheric parameter retrievals in the tropo-
sphere (Ma et al. 2000). Li et al. (1999c) demonstrated that surface emissivity spectra of
more than 50 soil and vegetation samples measured in the laboratory can be reconstructed
with an uncertainty of 0.005 by 6 selected bands in the 8−13 µm range. Due to the fact that
emissivity spectra can be recovered by a low number of unknowns in the interest spectral
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region, Ma et al. (2002) proposed an extended TSRM to extract LSEs, LST, and atmo-
spheric temperature–humidity profiles with MODIS MIR and TIR data by taking the solar
contribution into account.

The main idea of this method inherits that of atmospheric profile retrieval. First,
the atmospheric RTE is tangent linearized with respect to the atmospheric temperature–
humidity profiles, LST, and LSEs. Given an initial guess of LSEs, LST, and atmospheric
temperature–humidity profiles, a set of equations based on the tangent-linearized RTE
can be derived with the MODIS measurements. However, this is still an underdetermined
problem because the number of unknowns is still larger than the number of equations.
Consequently, the PCA technique is applied to the atmospheric temperature–humidity pro-
files as well as to the surface emissivity spectra so that the number of retrieved parameters is
reduced and the solution of the set of equations becomes well determined. On this basis, Ma
et al. (2000, 2002) proposed a TSRM to extract emissivity, together with LST, atmospheric
temperature, and moisture profiles by using the Tikhonov regularization and Newton iter-
ative algorithms, one after the other. The Tikhonov regularization is used to stabilize the
ill-posed problem and to obtain a meaningful solution, while the Newton iterative algorithm
is used to further improve the solution. Thus, the name of the technique is ‘two steps’.

There are some assumptions involved in the linearization of the RTE. These assump-
tions include (1) a horizontally homogeneous atmospheric condition, (2) a specular surface
reflection to simplify the integral of the downwelling atmospheric radiation, and (3) a
constant anisotropic factor (angular form factor) in the MIR region to describe the
non-Lambertian distribution of the bidirectional reflectance. However, these plausible
assumptions may introduce some errors in the retrieval, but play only a secondary role.
As discussed by Ma et al. (2002), one possible improvement of this type of method is
to improve the first-guess of the profiles and LSEs. They suggested using a model-based
first-guess of the MODIS retrieval, the Atmospheric Infrared Sounder (AIRS) retrievals,
and the first-guess of LSE retrieved by the D/N method. In addition, this method can
be used to process the hyperspectral TIR data, such as data from AIRS developed by
British Aerospace Systems, Infrared and Imaging Systems Division (LMIRIS; Lexington,
MA, USA) and the Interferometer Atmospheric Sounding Instrument (IASI) developed
by CNES (Centre National d’Études Spatiales) in the framework of a co-operation agree-
ment with EUMETSAT (European Organisation for the Exploitation of Meteorological
Satellites). These sensors have thousands of channels in the 3−14 µm region. Although the
physical method gives definite physical meaning for each parameter, it is of great complex-
ity. Similar to the above procedure, Li et al. (2007) retrieved global TIR emissivity spectra
from AIRS data using the physical method. However, more work, such as quality assurance,
needs to be done before taking this approach for operational process.

4. Comparison and analysis of different methods

The methodologies for estimating LSEs from space were briefly reviewed in the previous
section. With their advantages and limitations, these methods have different accuracies and
are applicable for various sensors and applications. It is important to evaluate them on an
identical standard and to give theoretical advice on their applications.

Generally, SEM is based on the VNIR spectral bands, while the others are based on the
MIR and TIR spectral bands. SEM and PBM do not require a priori accurate atmospheric
corrections because the methods are insensitive to atmospheric perturbation or because
the atmospheric parameters are treated as unknowns that are retrieved simultaneously with
emissivities. On the other hand, atmospheric corrections are crucial for the multi-channel
temperature/emissivity separation methods described in Section 3.2.
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Because the various methods have been proposed and developed under different cir-
cumstances and for various applications, only a few studies directly compare several
methods. For instance, Li et al. (1999b) evaluated six methods, including TISI, RCM, and
NEM, for extracting the relative spectral emissivity from TIR data. They showed that (1) all
of the methods are sensitive to atmospheric uncertainties, (2) the systematic error has little
effect on the relative emissivity retrieval, (3) instrumental noise from 0.1 K to 0.3 K can
lead to an error in the relative emissivity ranging from 0.002 to 0.005, and (4) the TISI and
NEM methods are recommended because they are slightly superior to others.

Because the TISI-based and TES methods are theoretically robust and do not require
a priori information on the emissivity or surface type (Dash et al. 2005; Sobrino et al. 2008)
whereas NBEM is operationally simple and can give a satisfactory estimate of the LSEs for
soil and vegetation mixed areas to some extent (Sobrino et al. 2002; Dash et al. 2005), TISI-
based, TES, and NBEM are often taken as reference methods for comparison to others.
Sobrino et al. (2002) compared several retrieval methods and found that NBEM and NEM
give the same absolute emissivity values with differences between 1% and 0.2%, while
NBEM and TES give the greatest differences of around 2%. Jacob et al. (2004) compared
MODIS TISI-based and TES retrievals over Africa and Jornada and found that the retrieval
results agree well, with root mean square deviations ranging from 0.006 to 0.016. Dash
et al. (2005) compared the performance of the TISI-based method and NBEM and found
that the dynamic range of LSE is compressed in NBEM. The difference between the LSEs
obtained by NBEM and the TISI-based methods ranges between –0.038 and 0.032, but the
peak of the histogram of LSE difference for vegetated areas is 0.002, which further confirms
that NBEM is more suitable for vegetated areas. Momeni and Saradjian (2007) evaluated
the emissivities of MODIS bands 31 and 32 retrieved from NBEM and the D/N method
and found that they agree relatively well with each other. Wang and Liang (2009) evaluated
the ASTER and MODIS emissivity products at six Surface Radiation Budget Network
(SURFRAD) sites and concluded that Collection 5 broadband emissivity is 0.01 larger than
that of MODIS Collection 4 products and ASTER emissivity. Obviously, these comparisons
contradict each other to some extent and highlight the importance of LSE validation.

Other methods, for a variety of reasons, have not been subject to a comparative analysis.
However, their assumptions, advantages, and drawbacks are comprehensively described
in Section 3, which gives full insight into the understanding of the emissivity retrieval
methods. To give a concise overview of the methods reviewed above, the assumptions,
advantages, and limitations of each of these methods are recapitulated in Table 1.

5. Validation of satellite-derived LSEs

Undoubtedly, the quality and accuracy of LSEs estimated using different methods can only
be assessed using validation. Generally, validation is important because the product accu-
racy is crucial to the scientific community and because feedback from the validation activity
is invaluable to the improvement of quality of the generated products (Liang et al. 2002;
Wang et al. 2007). Here, the validation activity consists of comparing the products to be val-
idated with similar products derived from other independent sources. There are two distinct
methods to validate the products. The first, known as the direct method, directly com-
pares the ground-based measurements with satellite-derived products. The second, known
as the indirect method, indirectly validates the non-validated product with the different
satellite-derived products, model simulations, or other information and applications.

The direct validation of emissivity is straightforward and can be accomplished by
comparing the retrieval emissivity with that measured in the laboratory or in situ. Direct
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emissivity comparisons are very challenging due to the heterogeneity of the land surface
and the difficulty in the definition of the emissivities themselves (Petitcolin and Vermote
2002). For the spatial variability in LSE, the emissivities measured in the laboratory are
not representative of the effective emissivity on a pixel scale. This problem can only be
prevented over highly homogeneous and relatively flat surfaces, e.g. lakes, dense vegeta-
tion, or a uniform large area of Silt Playa (Wan et al. 2002). Wan et al. (2002) report that
the key requirements for a good LST validation site are a size larger than several pixels; a
homogeneous surface in terms of material, emissivity, and temperature; easy accessibility
for the deployment of instruments; and minor interference between the validation activi-
ties and the normal life activities. This point of view is also appropriate for the validation
of LSEs. How then to obtain the ‘true’ emissivity for a given pixel on the homogeneous
surface? Generally, once the homogeneous area is identified, several points in this area
are selected and the corresponding emissivity is measured. To reduce the uncertainty, the
average of these measured emissivities is regarded as the ‘true’ emissivity in this site and
can then be compared with the satellite-derived emissivity. Dash et al. (2005) proposed
an approach based on object-oriented image analysis to identify homogeneous areas for
ground-truth validation of satellite-derived emissivities. This technology may be beneficial
for the ground-truth validation. Using this validation method, several studies are devoted
to describing the quality and accuracy of different emissivity retrieval methods for var-
ious sensors. Coll et al. (2001), Schmugge et al. (2002), Hulley, Hook, and Baldridge
(2009a), and Sabol et al. (2009) reported that the retrieved LSEs by TES are usually in
qualitative agreement with field or laboratory measurements. Sobrino et al. (2002) com-
pared the results obtained by NBEM, NEM, and TES with the emissivities obtained in situ
and concluded that NBEM gives the best results for vegetation plots and NEM for bare
soil and water plots, with errors around 1% in both cases, while TES yields the best results
for non-irrigated barley plots, with errors around 2%. Jimenez-Munoz et al. (2006) vali-
dated NBEM and TES and found that NBEM gives RMSE <0.005 over vegetated areas
and RMSE <0.015 over bare soil and that TES gives RMSE of about 0.01 for vegetated
areas but RMSE >0.03 over bare soil. Wang et al. (2007) compared the MODIS-derived
emissivities in bands 31 and 32 with the spectral emissivities measured from samples
collected at and around the Gaize site (a cold semi-desert region) and found that the ground-
based emissivity measurements agree well with the emissivities estimated by the CBEM.
However, Terra (Aqua) MODIS D/N-derived emissivities are 0.017 (0.011) less than
ground-based measurements. Nevertheless, Wan (2008) and Wan and Li (2010) compared
the emissivities retrieved from D/N to those measured by the Sun–shadow method in the
Railroad Valley Playa and the grassland in northern Texas and argued that the emissivities
retrieved using the D/N method compare well with the in situ measurements, reporting a
difference of less than 0.0075 in the 10–12.5 µm range. The contradictive issues raised by
these studies require more evidence to validate the emissivities and to provide application
suggestions. Hulley and Hook (2009a) compared the daily MOD11B1 emissivity product
with laboratory emissivity measurements of the field samples collected over the Namib
Desert and found that the mean absolute emissivity differences of bands 29 (8.55 µm),
31 (11 µm), and 32 (12 µm) are 1.06%, 0.65%, and 1.93% if the MOD11B1 emissivity
product is generated by the D/N algorithm in versions V4, V4.1, and V5, respectively, sug-
gesting that the MODIS V4- or V4.1-generated emissivity product is more accurate than
that generated by V5 over arid and semi-arid areas (Hulley and Hook 2009a; Hulley, Hook,
and Baldridge 2010).
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However, it is difficult to find homogeneous areas, and, in practice, the surface is always
heterogeneous on the pixel scale, driving us to determine the degree to which an emis-
sivity product can be consistent with the actual states. Indirect validation is therefore an
alternative and can reflect the performance and uncertainty for the emissivity-retrieved
methods. Indirect validation here refers to the comparisons between different satellite-
derived products, model simulations, or other information. An operational and effective
validation approach is to scale the fine-resolution measurements up to the low-resolution
measurements (Liang et al. 2002; Morisette, Privette, and Justice 2002; Wan et al. 2002;
Wan 2008). Once the products at the finer resolution are validated, the accuracy of the
products at the lower resolution can be assessed through product aggregation at the finer
resolution. Hulley, Hook, and Baldridge (2010) argued that the consistency of emissivity
products at different resolutions with the independent retrieval algorithms may increase the
reliability of products even though the rigorous validation is absent. This upscale valida-
tion method may be effective for emissivity validation; however, only a few attempts have
been made to date (Hulley et al. 2009b). Several researchers proposed using other indi-
rect methods to validate LSE retrieved from space. Petitcolin and Vermote (2002) proposed
checking the consistency of LST derived by TISI at different wavelengths to indirectly
validate the accuracy of emissivities and found that the LSE accuracy is of the order of
1%. Dash, Gottsche, and Olesen (2003) and Dash et al. (2005) tried to use the simulated
data to validate the emissivity retrieved by TISI. However, this synthetic validation only
provides a preliminary error analysis. A direct comparison and an indirect comparison
are still required for a final assessment. Momeni and Saradjian (2007) suggested that the
validation of LST retrieved by D/N is an indirect way to assess the accuracy of the esti-
mated emissivities because they are simultaneously derived from the same 2N equations.
However, this suggestion needs to be further investigated and verified.

6. Future development and perspectives

LSE has already been recognized as a crucial parameter for the discrimination and some-
times the identification of various surface types and for the determination of LST by
radiometry. Although various methods have already been developed, there is still no best
method to retrieve LSE from space. All of the methods either rely on statistical relation-
ships or on assumptions and constraints to solve the inherent ill-posed retrieval problem.
Therefore, they might not hold true under some circumstances, and it is necessary to choose
the optimum approach to estimate LSEs from space for a particular case by taking the sen-
sor characteristics, the required accuracy, computation time, as well as the availability of
atmospheric temperature and water vapour profiles into account. From the previous discus-
sion, the main restricting factors in the estimates of LSEs from remotely sensed data are
actually the following.

(1) The difficulty of the atmospheric corrections: the presence of the atmosphere
between the land surface and the sensors at satellite level disturbs the radiances
measured by a radiometer at the TOA. These radiances result primarily from the
emission/reflection of the surface modulated by the effects of the absorption, dif-
fusion, and emission of the atmosphere. To minimize these atmospheric effects,
sensors are always built in the windows where the atmosphere is most transparent to
TIR radiation. The atmospheric corrections thus consist of correcting the radiance
measured by the sensors for the effects of atmospheric absorption, emission, and
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emission−reflection. These effects can be variable because of the great variability
of the vertical profiles of atmospheric water vapour and temperature.

(2) The difficulty in decoupling the LST and LSEs in the measured radiances: inde-
pendent of the atmospheric problems presented in all spectral regions, the spectral
radiance emitted by a surface is a product of the spectral LSEs of this surface and
the spectral radiance of the black body at the LST. Therefore, it is not possible in
passive IRT (infrared temperature) radiometry to separate, on a physical basis, the
contributions due to LSE from the contributions due to LST in the observed radi-
ance. For this reason, LSE determination from space requires not only atmospheric
corrections but also knowledge of the LST and vice versa.

(3) The difficulty of physical interpretation of the measurement: the difficulties raised
by the atmospheric corrections and the temperature−emissivity coupling are, to
some extent, of a technical nature. On the other hand, the scaling problem is much
more fundamental because it implies a conceptual analysis of the physical signif-
icance of the measured quantities (variables). Indeed, the diversity of continental
surfaces involves spatial (vertical and horizontal) and radiometric heterogeneities
of surface. Considering that the spatial resolution of the current on-board systems
varies from 10−2 to 10 km2, it is therefore necessary to be able to define and cor-
rectly interpret surface parameters (variables) independently of the scale used and
the processes necessary to validate this definition.

(4) The difficulty of validation of LSEs retrieved from space at the satellite pixel
scale: comparisons between LSEs derived from space and in situ measurements
are required to evaluate the reliability and accuracy of the LSE-retrieved methods.
Although it may be feasible and reasonable to validate LSEs derived from remotely
sensed data with traditional measurements, mainly conducted at the ‘point’ scale
over uniform areas, problems will be encountered when the validation is performed
over complicated land surface areas.

Thus, a practical definition or interpretation of LSE at the pixel scale is of great help in
understanding the physical process and validating LSE. Besides the definition and interpre-
tation of the LSE for natural surfaces at the satellite pixel scale, studies are recommended
to focus on the following subjects in the future for the accurate estimation of LSEs from
space.

6.1. Enrichment of the spectral emissivity database

With the development of a new-generation sensors of high spatial resolution, the possi-
bility of having pure pixels is significantly increased. Because the surface classification
can be more accurately performed with the high-spatial resolution multispectral data, a
potential and practical candidate to estimate LSE from space is the CEBM if the spec-
tral emissivity database contains huge numbers of the natural and man-made materials
encountered in the world. Although there are already several spectral libraries, such as
the ASTER Spectral Library and the MODIS UCSB Emissivity Library, they only con-
tain the emissivity spectra for several representative samples. Most of the measurements
were performed by the use of an integrating sphere and a TIR spectrometer, which, in fact,
measures the hemispherical-directional (near-nadir) reflectance of the sample in laboratory.
Few measurements of emissivity spectra have been realized in the field due to the extreme
difficulty of separating LST and LSE from the measured radiance. The current available
emissivity database is far from meeting the requirements of CEBM operational use. It is
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3118 Z.-L. Li et al.

therefore urgent to enrich the spectral emissivity database by both laboratory and field
measurements and to document this database well. Moreover, an elaborate classification
system should be established to strike a good balance between the number of classes and
the emissivity accuracy.

6.2. Modelling of surface spectral emissivity in the atmospheric window (3–14 µm)

As stated earlier, there are always N + 1 unknowns for N spectral measurements
(N equations); even though the atmospheric effects are known, the equations for the
N + 1 unknowns are underdetermined. To overcome this problem and to make the solution
well determined, one needs to either decrease the number of unknowns and/or increase the
number of equations. The development of the surface spectral emissivity model intends to
decrease the number of unknowns and to help estimate surface composition and surface soil
moisture from spectral emissivity. This type of model needs several component properties
or parameters to simulate the emissivity spectrum in the atmospheric window (3−14 µm).
To date, the simulating model in the MW region has been developed and validated, such as
the advanced integral equation method (AIEM) (Chen et al. 2003). The AIEM can simulate
the band emissivities of bare soil at different frequencies and polarizations when the volu-
metric soil moisture and surface roughness parameters are given. Unfortunately, a similar
model for the TIR region has not been developed yet. The development of a model to sim-
ulate the surface spectral emissivity in the atmospheric window (3−14 µm) using the main
factors affecting emissivity, such as surface composition, surface soil moisture, structure
and roughness, plant species, aerial density, and plant growth state, is therefore urgent.

6.3. Development of the intrinsic relationship of emissivities among several channels

As mentioned in Section 6.2, to make it possible to retrieve the LST and LSEs from the
atmospherically corrected TIR data, it is necessary to reduce the number of unknowns
and/or increase the number of equations. Some studies have been already attempted to
find extra emissivity constraints. Liang (2001, 2004) used a statistical relationship between
multi-channel emissivities as a new equation to retrieve multi-channel emissivities. Based
on the fact that the surface emissivity spectrum is rather smooth compared to atmospheric
spectral features in the hyperspectral TIR data, Borel (1997) used the smoothness charac-
teristic of emissivities as a new equation to separate LST and LSEs from the hyperspectral
TIR data. Recently, Wang et al. (2011) assumed that the emissivities are a linear func-
tion of wavelength within a small wavelength interval in which there are at least three
bands and used segment linear functions to describe the emissivity spectrum. Because each
linear function has only two unknowns, the use of segment linear functions dramatically
reduces the number of unknowns and makes LST and LSEs retrieval from hyperspectral
TIR data stable and feasible. Other constraints or relationships may be proposed to reduce
the number of unknowns and to increase the number of equations.

6.4. Methodology development for atmospheric corrections in hyperspectral TIR data

Atmospheric corrections play an important role in LST and LSEs retrieval from remotely
sensed TIR data. Accurate atmospheric corrections must be performed and are the precon-
dition for applying most of the LST/LSE separation methods. For LSEs retrieved from TIR
multispectral data, atmospheric effects are generally corrected using either radiosounding
data or atmospheric profiles retrieved from other sensors or platforms. However, along with
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the development of the new hyperspectral TIR sensor on board, much more detailed infor-
mation on the atmosphere and land surface can be acquired. In other words, the narrow
bandwidth of the hyperspectral resolution makes atmospheric absorption features promi-
nent in the observed radiance spectrum, which offers an unprecedented opportunity to
correct for atmospheric effects using the hyperspectral TIR data themselves. Recently, there
has been some progress on this issue. Young, Johnson, and Hackwell (2002) proposed an in-
scene method to correct for atmospheric effects. Subsequently, this method was improved
by Borel (2008). Gu et al. (2000) developed an autonomous atmospheric compensation
method with the same purpose. However, both of them assume that the atmospheric state
does not change while the surface temperature does over the whole study region. In the
near future, research on this topic should therefore be focused on how to perform atmo-
spheric corrections for the purpose of LST/LSE separation using only hyperspectral TIR
data, without resorting to auxiliary data and assumptions.

6.5. Simultaneous retrieval of LSE, LST, and atmospheric profiles from hyperspectral
TIR data

The sensors on board satellites measure radiances only at the TOA. These measured
radiances are dependent on LST, LSEs, and atmospheric states. The coupling of surface-
emitted radiance and atmospheric absorption, diffusion, and emission makes it difficult to
retrieve surface parameters (LST and LSEs) and atmospheric profiles separately. The deter-
mination of surface parameters from space requires knowledge of atmospheric profiles and
vice versa. It is therefore natural, preferable, and challenging to develop a method to simul-
taneously retrieve LST, LSEs, and atmospheric profiles without any a priori information on
the surface and atmosphere. The developed methods can be regarded as the most promis-
ing ways to simultaneously retrieve these parameters in the near future. However, these
methods may demand adequate observation channels with narrow bandwidth that can sup-
ply enough vertical resolution to extract atmospheric information and to separate LST and
LSEs. In this aspect, Ma et al.’s (2000, 2002) work can be regarded as the first attempt to
retrieve LST, LSE, and atmospheric profiles without any auxiliary information. The appear-
ance of hyperspectral TIR measurement offers a more attractive opportunity, and efforts
in the near future should therefore be made to develop methodologies for simultaneously
retrieving LSEs, LST, and atmospheric profiles from hyperspectral TIR data. To date, sev-
eral methods have been proposed to decouple LST and LSE from either at-ground radiances
(Cheng et al. 2008, 2010, 2011; Wang et al. 2011) or TOA radiances (Li et al. 2011). At the
same time, the method for estimating LSE from hyperspectral TIR data is also developed
(Zhou et al. 2011). These efforts along with the physical methods of simultaneous retrieval
of LSE, LSE, and atmospheric profiles (Ma et al. 2000, 2002; Li et al. 2007) would be of
great benefit to the accurate estimation of LSEs from space.

6.6. Estimation of the broadband-hemispherical emissivity from the retrieved
narrowband-directional emissivities

Surface broadband-hemispherical emissivity is an essential parameter for estimating
the surface upward longwave radiation, which is an important component of the sur-
face radiation budget and also an important parameter for numerical weather predic-
tions and hydrological models (Blondin 1991; Jin and Liang 2006). Knowledge of the
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surface broadband-hemispherical emissivity is therefore valuable. However, the emissivity
retrieved from remotely sensed TIR data represents only the narrowband-directional emis-
sivity. It characterizes the emission features of the surface in a specific observation direction
in a few narrow bands in the atmospheric window (3−14 µm) rather than the broadband-
hemispherical emissivity required for the calculation of surface upward longwave radiation
(0–∞ µm). The difficulties in estimating the broadband-hemispherical emissivity from
remote-sensing measurements are that the measurements can only be conducted (1) in a
few narrow spectral bands in the atmospheric windows and not over the whole spectrum
(0–∞ µm), raising the issue of the spectral integration over the whole electromagnetic
spectrum and (2) at a small number of observation angles, raising the issue of the angu-
lar integration over the whole upward hemisphere. The problem to be solved is therefore
the determination of the best spectral channels (narrow bands) and observation angles to
achieve the most accurate estimation of broadband-hemispherical emissivity. At present,
some efforts have only focused on the estimation of broadband-directional emissivity for
some specified spectral domains because of the limitation of the measured spectral emis-
sivity in the 3−14 µm region (Ogawa et al. 2003; Wang et al. 2005; Jin and Liang 2006;
Tang et al. 2011). To our knowledge, there has been no literature involved in the conversion
of the directional emissivity to the hemispherical emissivity.

As demonstrated by Tang et al. (2011), the spectral domains in which we have spec-
tral measurements of the emissivity (3−14 µm) account only for 51.5% of the emitted
radiant flux for a black body at 300 K, while the unknown spectrum accounts for the
remaining 48.5% of this flux. The contribution of the spectral interval from 3 to 100 µm
to the emitted flux is more than 99%. Therefore, the broadband-hemispherical emissivity
with integrated spectral range, reaching 100 µm, should be accounted for to minimize the
impact of the emissivity signature on the radiant flux determination. Over the last 30 years,
a large number of measurements of the spectral directional emissivity of natural media
in the atmospheric window (3−14 µm) have been performed in the laboratory and in the
field, but no synchronous broadband-hemispherical emissivity is available. Thus, the empir-
ical relationship developed for estimating the broadband-directional emissivity from a few
narrow bands in the atmospheric window is limited to 3−14 µm. It is therefore urgent in
the near future to (1) develop an instrument that can be used to simultaneously measure the
spectral emissivity in the atmospheric window and the broadband-hemispherical emissivity
in the whole spectrum (0–∞ µm), (2) solve the problem presented above, and (3) develop
some methodologies to estimate the broadband-hemispherical emissivity from the retrieved
narrowband-directional emissivities.

6.7. Combined use of laser CO2 as an active source and TIR sensor measurements to
estimate LSE

Inspired by the principle of the TISI-based method reviewed in Section 3.3.1, a possible
solution to estimate LSE can be obtained based on the simultaneous use of passive and
active radiometry. This solution can be realized by viewing the surface with and without
the illumination of a CO2 laser (10.6 µm) over a very short time interval (Nerry, Stoll, and
Kologo 1991). The backscattered coefficient is then extracted by comparing data acquired
with and without the CO2 laser. The surface directional emissivity is therefore obtained if
a relationship between backscattered coefficients and directional emissivity is developed.
This relationship is a large challenge and very promising way to map LSE. Many efforts
should be made in the near future in this topic.
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6.8. Validation of the LSE at the satellite pixel scale

Validation is the process of independently assessing the uncertainty of the data products
derived from the system outputs. Without validation, any methods, models, algorithms,
and parameters derived from remotely sensed data cannot be confidently used. Validation
is the most important and urgent issue to be dealt with, as stated by Li et al. (2009). Due
to the surface heterogeneity, the validation of LSEs at the satellite pixel scale using the
‘point’ scale measurements over non-uniform and heterogeneous surfaces is questionable.
The lack of LSEs at the satellite pixel scale for true validation limits the improvement and
development of the LSE retrieval methods from space. Although two general methods have
been proposed to validate LSE, as stated in Section 5, appropriate methods for validating
LSEs at the satellite pixel scale must be developed and the validation must be performed to
provide feedback and some clues to improve the accuracy of the retrieved LSEs. Up to now,
the high-resolution (100 m) North American ASTER Land Surface Emissivity Database
(NAALSED) Version 2.0 has been released and validated (Hulley and Hook 2009b; Hulley,
Hook, and Baldridge 2009a). This emissivity database may be used indirectly to validate
other LSE products with coarser spatial resolution.
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