Ocean color and SST applications in Chinese water

Remote Sensing of "Wind Pump" Effects on Marine System

DanLing TANG,

South China Sea Institute of Oceanology, Chinese Academy of Sciences, China

lingzistdl@126.com, 13924282728

Introduction

Scientific question

Driver? Ocean dynamic ? Climate change→Marine Ecosystem→Phytoplankton?

Climate Changes

"Wind Pump"?

Is a series of processes driven by wind that influence ocean currents and water movement which subsequently affects ocean's ecological status.

Phytoplankton Blooms

1. depth hypothesis

1. critical depth hypothesis

(Sverdrup 1953).

Mixing depth < critical depth

Gran and Braarud 1935

在营养盐对浮游植物的生长无限制作用时

On Conditions for the Vernal Blooming of Phytoplankton.

> H. U. Sverdrup, Norsk Polarinstitutt, Oslo.

Bloom

LocalTimePeriod

2. Eutrophication hypothesis

Nutrient /light-temperature

Bloom

LocalTimePeriod

半个多世纪以来,这些理论得到细化、深化、和发展

但是仍然不能解释很多海洋藻华现象

- No local
- Time and location changed
- Short period
- Ocean phytoplankton bloom observed from satellite :

SeaWiFS Chlor

- Mixing depth > critical depth
- No Eutrophication
- (no N)
- •Time and location

Marine Primary Production

Explain Phytoplankton bloom

Local bloom
time period (season)
Long duration

Remote Sensing Observations Marine Environment and ecology

中科院南海海洋研究所 唐丹玲

Phytoplankton Bloom –wind pump induced

DanLing TANC

Tang DL et al., 2004, GJR

Tang DanLing 唐丹玲

http://lingzis.51.net/

Offshore water?

(Tang et al. 2004, JGR)

Chlore	ophyll	Concentr	ation (mg	/m ³)
	0.1			
0.01		1	10	60

B. Wind July 13-20, 2002

Tang et al., 2006, JGR

 ${\rm month}\,(1997 \ {\rm to} \ 2004$)

Wind pump

Wind is very important! How about Typhoon?

Remote Sensing Observations Marine Environment and ecology

中科院南海海洋研究所 唐丹玲

Typhoon impact on Marine Ecosystem

Climate Change → SST -> Typhoon

Marine ecosystem

phytoplankton

DanLing TANG

Zheng and Tang, MEPS 2007

Offshore and nearshore chlorophyll increases induced by typhoon and typhoon rain.

<u>Guangming Zheng and Danling Tang, 2007,</u> <u>Marine Ecology Progress Series, 333: 61-74, 2007 (SCI)</u>

Sea level variation & sea surface cooling

http://lingzis.51.net/

DanLing TANG

Zheng and Tang, MEPS 200

intensities /Wind Speed?

translation speeds

.) Track and intensity of typhoons L-L (2001) and K-T (2005) in the SCS. MSW: maximum sustaines (in knots, 1 kn = 0.514 m s^{-1})

Zhao H, DanLingTang, Wang Y. 2008 MEPS

Tang DanLing 唐丹玲

Strong, fast-moving (4.4ms-1)

Weak, slow moving (2.87 ms-1) KT

Wind

SST

Chl a

Eddy-feature phytoplankton bloom induced by tropical cyclone in the South China Sea,

(Chen & Tang, 2010, IJRS)

m S⁻¹

typhoon Wind Pump

Energy Transfer

同前

^{6.} Sea surface currents (little white arrows)

Wind pump effects on marine ecosystem

Available online at www.sciencedirect.com

ScienceDirect

Advances in Space Research 53 (2014) 1081-1091

ADVANCES IN SPACE RESEARCH (a COSPAR publication)

www.elsevier.com/locate/asr

Response of dissolved oxygen and related marine ecological parameters to a tropical cyclone in the South China Sea

Jingrou Lin^{a,b,c}, Danling Tang^{a,b,*}, Werner Alpers^d, Sufen Wang^a
A Southwestern Monsoon Season

B Northeastern Monsoon Season

the super-typhoon Nanmadol on 22 - 30 August 2011,

Horizontal distribution of DO concentration

(in mg l1) at different depths at 19–22N, 116–120E (a–g).

Jingrou Lin, Danling Tang*, Werner Alpers, Sufen Wang, 2014. Advances in Space Research。 http://dx.doi.org/10.1016/j.asr.2014.01.005

Horizontal distribution

s1)

Daily averaged Ekman pumping velocity (m s1)

Fig.8

Enhanced sea-air CO₂ exchange

influenced by a tropical depression in the South China Sea

QY SUN, DL TANG, Louis Legendre, P Shi, GJR, 2014

A tropical depression (TD) in the SCS

change temporarily

(1) Increase in **fish abundance** during two typhoons in the South China Sea

ADVANCES IN SPACE RESEARCH (a COSPAR publication) www.elsevier.com/locate/asr

Increase in fish abundance during two typhoons in the South China Sea Jie Yu^{a,b,c}, Danling Tang^{a,c,e}, Yongzhen Li^b, Zirong Huang^b, Guobao Chen^b

Yu & Tang, 2013, ASR

(2) species number

No	1	2	3	4 to 8	9	10	11	12	13	14	15	16	17	18	19	20	2																	
e7		$^{\vee}$									\checkmark																							
s3		$^{\vee}$						\checkmark																										
s4		$^{\vee}$						\vee							\checkmark	\vee																		
s5		\checkmark						\vee	\checkmark	\checkmark	\vee	\vee	\vee	\checkmark	\vee	$^{\vee}$																		
s7		\vee						\vee		\checkmark	\vee	\vee	\vee	\vee	\vee	\vee																		
s8								\vee	\checkmark	\checkmark	\vee	\vee	\checkmark	\checkmark	\checkmark	\vee																		
s10								V							\vee		No	1	2	3	4	5	6	7	8	9	14 to 15	16	17	18	19	20	25	26
s11		\checkmark		G				\checkmark	\checkmark						\checkmark	\vee	s5	\vee		\vee						\vee		\vee	\vee	\vee	\checkmark	\vee	\vee	\vee
s12		\checkmark		0				V			\vee						s8											\checkmark	V	V	V	V		V
s13				N				V	\checkmark	\vee	V	\vee	\vee	\checkmark	\vee		s11	V		\checkmark								\checkmark	V		V	\mathbf{v}		
s14				IN				V	V	\vee	\vee	V	V		\vee	\vee	s13			V							ĸ		V		V			
s15		\checkmark		1				V				V	\vee		\vee	V	s14	\checkmark		\vee						\checkmark	K	\checkmark	\vee	V	\checkmark	$^{\vee}$		
s16		\vee						V			\vee		\vee		\vee	\vee	s16	\vee		\vee						\vee	0	\checkmark	V	V				\vee
s21		\checkmark						\vee				\vee			\checkmark	\vee	s17	V		V							Ŷ	208	V	V				100
s22		$^{\vee}$						\vee		$^{\vee}$		\vee	\vee	$^{\vee}$	\checkmark		s21	\checkmark									р	$^{\vee}$	$^{\vee}$	\vee	$^{\vee}$	$^{\vee}$		\vee
o1		$^{\vee}$						\vee	\vee	\checkmark	\vee	\vee	\vee	\checkmark	\checkmark		01			\vee						\checkmark	u	$^{\vee}$	\vee	\vee				
04		\vee						\vee							\checkmark		05	\vee		\vee						$^{\vee}$		\checkmark	\vee	\vee	\vee	$^{\vee}$		\vee
o5		$^{\vee}$						\vee	\checkmark	\checkmark	\vee	\vee	\vee	\checkmark	\checkmark	\vee	e2												\vee					
<u>e9</u>		V			_												e3													$^{\vee}$				
e1				R				\vee									e5												\vee	$^{\vee}$				$^{\vee}$
e2								\vee									e6												\vee	\checkmark	\checkmark	\vee		
e6								\vee							\checkmark	\vee	e7											\checkmark	\checkmark	$^{\vee}$	\checkmark	\vee		\vee
s6			Inci	reased	1			\vee	\checkmark				\vee	$^{\vee}$		$^{\vee}$	s2											$^{\vee}$						
s17		2	reco	ords				\vee		\vee					\checkmark	\vee	s3											\checkmark	\vee	\vee	\checkmark			
s18								\vee							$^{\vee}$	\vee	s4											\checkmark	$^{\vee}$	$^{\vee}$	\checkmark		$^{\vee}$	
s19								\vee								$^{\vee}$	s6												\vee	$^{\vee}$				
s20								\vee			\checkmark				\checkmark	\vee	s7							Inc	creas	sed		$^{\vee}$	\vee	\checkmark	\checkmark			
o3					_			V			- 254	\vee	\vee		\vee	V	s10							rec	cords	5		\checkmark	$^{\vee}$	$^{\vee}$	$^{\vee}$			
																	s12												$^{\vee}$	\checkmark	\checkmark	\checkmark		
					N 1												s15												$^{\vee}$	$^{\vee}$	\checkmark			
					IN (ev	vr	ec	or	as							s18											\checkmark	$^{\vee}$	$^{\vee}$				
																	s19												$^{\vee}$	\checkmark				
																	s20												$^{\vee}$	$^{\vee}$	\checkmark			
			Yu	1 & T	an	g, 2	201	3, A	SR								s22											$^{\vee}$	$^{\vee}$	\vee	\checkmark	$^{\vee}$		
																	03											\vee	\vee	$^{\vee}$	\checkmark	\checkmark		
																	04												V	V	V	V		

Table 1		
Information of 30 ma	ain fishes sampled	in the area.

No	Common name	Description	Habitat depth	Tropical level
1	Pelagic scad	Decapterus spp. dominated by D. manuadsi	Pelagic	Low class carnivorous fish
2	Ponyfish	Leiognathus spp. dominated by L bindus and L elongatus	Pelagic	Low class carnivorous fish
3	Pomfret	Pampus spp. dominated by P. argenteus and P. chinensis, and Parastromateus niger	Pelagic	Low class carnivorous fish
4	Chub mackerel	A single species of Scomber japonicus	Pelagic	Low class carnivorous fish
5	Spanish mackerel	Scomberomorus spp. dominated by Sguttatus and Scommerson	Pelagic	High class carnivorous fish
6	Spinyhead croaker	Collichthys spp, dominated by a Collichthys lucidus	Meso demersal	Low class carnivorous fish
7	Jewfish	Johnius spp. dominated by J. dussumieri and J. belangerii	Meso demersal	Low class carnivorous fish
8	Yellow drum	a single species of Nibea albiflora	Meso demersal	Low class carnivorous fish
9	Silver croaker	Pennahia argentatus	Meso demersal	Low class carnivorous fish
10	Grouper	Epinephelus spp. dominated by E. akaara and E. awoara	Meso demersal	Middle class camivorous fish
11	Red barracuda	a single species of Sphymena pinguis	Meso demersal	High class carnivorous fish
12	Hairtail	Trichiurus spp. dominated by T. lepturus	Meso demersal	High class carnivorous fish
13	Pacific rudderfish	a single species of Psenopsis anomala	Demersal	Low class carnivorous fish
14	Threadfin bream	Nemipterus spp. dominated by N. virgatus	Demersal	Low class carnivorous fish
15	Porgies	a single species of Parargyrops edita	Demersal	Low class carnivorous fish
16	Bigeye	Priacanthus spp. dominated by P. tayenus and P. macracanthus	Demersal	Low class carnivorous fish
17	Filefish	Thamnaconus spp. dominated by T. hypargyreus	Demersal	Low class carnivorous fish
18	Goatfish	Upeneus spp. dominated by U. moluccensis and U. sulphureus	Demersal	Low class carnivorous fish
19	Tonguesole	Cynoglossus spp.	Demersal	Low class carnivorous fish
20	Sillago	Sillago sihama and S. japonica	Demersal	Low class carnivorous fish
21	Monkfish	Lophius spp. dominated by Lophius litulon	Demersal	Middle class carnivorous fish
22	Snakefish	a single species of Trachinocephalus myops	Demersal	Middle class camivorous fish
23	Conger pike	Muraenesak cinereus	Demersal	High class carnivorous fish
24	Lizardfish	Saurida spp. dominated by S. tumbil and S. undosquamis	Demersal	High class carnivorous fish
25	White-spotted spinefoot	Siganus spp. dominated by Siganus oramin	Reef	Omnivorous fish
26	Octopus	Octopus spp.	Cephalopoda	Low class carnivorous fish
27	Squid	Loligo spp.	Cephalopoda	Low class carnivorous fish
28	Cuttlefish	Sepia spp.	Cephalopoda	Low class carnivorous fish
29	Crab	Portunus spp. and Charybdis spp.	Crab	Low class carnivorous fish
30	Shrimp	Penaeidae	Shrimp	Low class carnivorous fish

Wind driven algal bloom in the open oceans

"Wind pump"

 Is a series of processes driven by wind that influence ocean currents and water movement which subsequently affects ocean's ecological status.

"Wind pump"

 Is to change the transport of nutrients, promote the cycling of major elements in the ocean, thus drive primary production and marine ecosystem and affect carbon fixation and global fishery resources.

Remote sensing

ecology

surface size structure

Fig.4 Distribution of (a) Total chlorophyll a concentration merged with SLA (Sep. 2014); surface concentration of (b)picophytoplankton; (c)Nanophytoplankton; (d)Microphytoplankton during in situ observation.

图5 断面(a)T1、(b)T2、(c)T3、(d)T4、(e)T5、(f)T6 上各站点表层不同粒径大 小占总叶绿素的比例。灰色背景表示急流区域。

Fig.5 Percentage contribution of various size fractions of phytoplankton to the total chlorophyll in surface of (a)T1, (b)T2, (b)T3, (d)T4, (e)T5, (f)T6. Background in grey represents stations in jet area.

图6 叶绿素*a*浓度与(a)微微型浮游植物的比例; (b)微型浮游植物的比例; (c)小型浮游植物的比例的相关性。(d)温度与盐度的相关性。

Fig.6 Correlation between in situ sea surface total chlorophyll a and percentage of (a) picophytoplankton, (b) nanophytoplankton and (c) microphytoplankton (d) Correlation between in situ surface temperature and salinity.

Fig.7 Conceptual sea surface size structure characteristics of phytoplankton and its influence mechanism in summertime western South China Sea.

Nested-grid ocean circulation model (ROMS)

Horizontal grid size 1/18 $^\circ~$ (~ 6 km)	Horizontal grid size 1/54 $^{\circ}$ (~ 2 km)							
40 sigma levels	40 sigma levels							
Boundary condition: SODA								
Topography data: GEBCO								
The surface forcing: CFSR (0.3°)+parametric vortex								

The SST comparison between model and remote sensing data

Model

Remote sensing data

GHRSST L4 OSTI data (~ 5 km)

14/26

Storm-induced surface circulation and SST change (Vortex Run – Smoothed Run)

MODIS surface chl-a concentration

MODIS-derived sea surface chl-a concentration. (a) Before cyclone Linfa and (b) after cyclone Linfa. The red dashed line represents the storm track.

°C 2009062000 24°N 1.5 21°N 0.5 ٥ -0.5 18°N -1.5 15°N -2 -2.5 12°N . 111°E . 114°E . 117⁰E 108°E 120°E

Vortex Run – Smoothed Run

The typhoon induced ocean response due to **upwelling + vertical mixing**

Vortex NoAdv Run - Smoothed NoAdv Run

The advection terms in the model tracer equations are switched off

The typhoon induced ocean response due to **vertical mixing**

How importantOcean color ??

Milestone

- Satellite remote sensing, in Ocean Sciences
- Ocean color- Marine Biology marine Ecology

Ocean Color remote sensing –Chl-a – relate marine biology –。

- Multi –
- channel
- Sensors
- Satellite
- Access
-people

Milestone

"Remote sensing of Marine Ecology

DanLing TANG (lingzis)

South China Sea Institute of Oceanology Chinese Academy of Sciences

lingzistdl@126.com, 13924282728

- 1,
- 2,
- 3. Wind pump

Satellite Remote Sensing

遥感----远离地球,利用物体的光谱特征获取其空间信息,从而认识物体空间属性的技术。

- channel
- Sensors
- Satellite
- Access
-people

Pan Ocean Remote Sensing

风作用于海洋表面,改变水体的移动,并产生一系列环境生态 效应,这一过程统称为"风泵"。

"风泵"改变营养盐输运,促进海洋生源要素循环,驱动上层海洋初级生产以及生态系统,并进一步影响海洋固碳过程及全球渔业资源。

"风泵Wind Pump"理论的发展

(Wind pump 也是海洋藻华动力假设的第3个理论)

从<mark>能量</mark>传递角度, 突破传统研究学科局限性,开放系统构架下的"风泵"研究

从<mark>能量</mark>传递角度, 突破传统研究学科局限性,开放系统构架下的"风泵"研究

海洋藻华形成 3 个经典理论

营养、温度、光

主要解释 藻华

●由局地形成 ●时间位置较为固定 ●持续时间较长

●非局地形成 ●时间位置不固定 ●持续时间较短

Outline

Introduction

• General Circulation over eastern Canadian shelf (ECS)

• Objective

- To examine the circulation, dispersion, retention, and hydrodynamic connectivity of surface waters over the ECS
- To understand the physical processes that characterize the upper ocean response to tropical cyclones
- To study the dynamic of the storm-induced deep water intrusion of Halifax Harbour
- Preliminary Results

Observations in Bedford Basin (2014 - 2015)

Nested-grid ocean circulation model (ROMS)

Horizontal grid size $1/50^{\circ}$	Horizontal grid size 1/400 (~ 270 m)	
32 sigma levels	32 sigma levels	
Boundary condition: SODA	River runoff : Bulkley and Winters (1992)	
GEBCO	Water depth data provided by David	
	Greenberg at BIO + GEBCO	
The surface forcing: CFSR		
The tidal forcing: Oregon State University global model TPXO.7		

Evidence of deep water intrusion from modeling results

Two-layer circulation structure in Halifax Harbour (from Fader and Miller 2008)

• The three-dimensional circulation model coupled with a simple oxygen model will be used to study the physical processes affecting dissolved oxygen concentration in deep Bedford Basin.

(Courtesy to Liuqian and Fennel, 2014).

Timelines

Period	Activities	
2017	Paper published in Satell Oceanogr Meteorol: "Circulation, dispersion and hydrodynamic connectivity over the Scotian Shelf and adjacent waters"	
Oct. 2018	Proposal defense	
Oct. 2018 – Nov. 2018	Modify and submit the paper: "numerical study of the storm- induced circulation in the South China Sea"	
Nov. 2018	Sea time (Dalhousie-BIOS Experiential Learning Funding)	
Nov. 2018 – Feb. 2019	Continuing to work on: "the physical processes affecting dissolved oxygen concentration in deep Bedford Basin"	
Feb. 2018 – Apr. 2019	Thesis writing	
May - 2019	Thesis Defense	

change temporarily

(1) Increase in **fish abundance** during two typhoons in the South China Sea

ADVANCES IN SPACE RESEARCH (a COSPAR publication) www.elsevier.com/locate/asr

Increase in fish abundance during two typhoons in the South China Sea Jie Yu^{a,b,c}, Danling Tang^{a,c,e}, Yongzhen Li^b, Zirong Huang^b, Guobao Chen^b

Yu & Tang, 2013, ASR

Seasonal variation of SST

Increasing of Monthly (1985-2005)

Increase of SST; Seasonal extension of higher SST

遥感海洋生态科学

25th PACON March, 2017, Zhoushang, China

Available satellite remote sensing

Variables	Production	Sensor	Duration
SST	Pathfinder monthly SST	AVHRR/NOAA	1981.09 – 2006.12
	Monthly 11um Night SST	MODIS/Aqua	2002.07 - present
	Level-2 EDR SST	VIIRS/SuomiNPP	2012.01 - present
Chl	Chlorophyll concentration	CZCS	1978.10 - 1986.06
	Chlorophyll concentration	OCTS	1996.11 - 1997.06
	Chlorophyll concentration	SeaWiFS	1997.09 - 2010.12
	OCI algorithm Chlorophyll	MODIS/Auqa	2002.07 - present
	OCI algorithm Chlorophyll	VIIRS/SuomiNPP	2012.01 - present
SSS	Sea surface salinity V4.0	Aquarius	2011.08 - present
	Level 2 Ocean Salinity	SMOS	2010.12 - present
SSH	Sea level	TOPEX/Poseidon	1992.08 – 2005.12
	Sea level	Jason-1	2002.01 - 2013.06
Sea wind	Sea surface winds	SeaSat	1978.06 – 1978.10
	Weekly sea wind	QuikSCAT	1999.07 – 2009.11
	Sea wind	ASCAT/Metop-A	2006.10 - 2007.04
Rainfall	3B43	TRMM	1998.01 - present

Monthly averaged SST data in different time. (A) SST derived from the AVHRR sensor onboard the satellite NOAA-7 in September 1981, and (B) SST derived from the MODIS sensor onboard the satellite Aqua in April 2015.

Area-averaged time series MODIS/Aqua night SST 4km resolution during Jul 2002 – May 2015

Monthly averaged Chlorophyll concentration in December in different year. (A) Chl derived from CZCS data in 1978, and (B) Chl derived from MODIS/Aqua in 2014.

Area-averaged time series MODIS/Aqua Chlorophyll 4km resolution during Jul 2002 – May 2015. Region 54-57E, 9-12N (A), and region 87-90E, 9-12N (B), which corresponding to the blue boxes 1 and 2 in Fig. 4B, respectively.

Monthly SSS in Apr 2015. Data from http://oceancolor.gsfc.nasa.gov/cgi/l3

A snapshot of sea level anomaly on Apr 29, 2013. The spatial resolution is $1/4^{\circ} x1/4^{\circ}$.

SST data

Landsat MSS, 1973/10/17

Landsat TM, 1989/08/20

Landsat ETM+, 1999/09/01

Landsat ETM+, 2002/04/02

Coastline monitoring in the southwest of Singapore.

Coastline Change (1999-2002)

Coastline Change (1973-2002)

Coastline monitoring in the southwest of Singapore.

DanLing TANG (lingzis)

South China Sea Institute of Oceanology Chinese Academy of Sciences

国家海洋战略和利益

Multi-platform Long-term observations

The 5th International Symposium on Remote Sensing of the Indian Ocean-South China Sea and Typhoon Sciences (IOSCS-Typhoon 2015)—International Cooperation in Research for the 21st Century Maritime Silk Road 211 (世纪海上223)之路的海洋研究与国际合作—第5月时更詳一南海海洋遥惑与合风科学国际研究会 2015-8-23 Remote Sensing of Maritime Silk Road Region -- Environments and Ecosystem

--- "Wind pump" and "Remote Sensing of Marine Ecology"

DanLing Tang

South China Sea Institute of Oceanology Chinese Academy of Sciences

http://lingzis.51.net/

Lingzistdl@126.com

6. Sea surface currents (little white arrows)

<u>Yongqiang</u> <u>CHEN, DANLING TANG,</u> <u>2012,</u>

Eddy-feature phytoplankton bloom induced by tropical cyclone in the South China Sea,

International Journal of Remote Sensing. Vol. 33, No. 23, 10 December 2012, 7444–7457. (SCI)

Chen, Tang, 2011, IJRS

Climate - "Wind Pump" upwelling, mixing, nutrients redistribution phytoplankton - primary production - marine ecosystem

International Think Tank Forum

Marine Environmental Protection: Prospects and Challenges?

DanLing Tang 唐丹玲 中国科学院 南海海洋研究所

South China Sea Institute of Oceanology Chinese Academy of Sciences

China HY-1B卫星

Suzhou

Shanghai

Hangzhou

HY-1B/COCTS 2008-3-1 2:46 GMT

Latent Heat Flux

Respirations

Data: NCEP/NCAR Reanalysis Project, 1959-1997 Climatologies Animation: Department of Geography, University of Oregon, March 2000 <u>人造卫星中,间谍卫星高度最低,低的只有一百多公里,以便清晰地拍摄地</u> 面的照片,因为稀薄大气的阻力,所以寿命也不长;

高度较高的有同步静止卫星,高度在3.6万公里,

<u>还有科学探测卫星,如我国发射的"双星"探测卫星,最远有8万多公里.....</u> <u>还有嫦娥1号等月球探测卫星,因为没有飞离地球系统,还是称为"卫</u> <u>星",高度就有38万公里左右。</u>

在卫星轨道高度达到**35800**千米,并沿地球赤道上空与地球自转同一 方向飞行时,卫星绕地球旋转周期与地球自转周期完全相同,相对位置保 持不变。此卫星在地球上看来是静止地挂在高空,称为地球静止轨道卫星, 简称静止卫星

Welcome to

13rd PORSEC

3 – 11 Nov 2016, Fortaleza, Ceará, Brazil

PORSEC 2016, 4 - 11 November 2016, Fortaleza, Ceará, Brazil

25th PACON

March, 2017, Zhoushang, China

Sciences

2015年, Science publish 5 papers

OCEAN PLANKTON

Structure and function of the global ocean microbiome

Shinichi Sunagawa¹⁶ † Lais Pedro Coelho,¹⁶ Samuel Chaffbon,^{35,46} Jens Roat Kultima,¹ Karine Labadie,⁶ Guillem Salazar,⁶ Bardya Djahanschiri,¹ Georg Zeller,¹ Daniel R. Mende', Adriana Alberti,¹ Francisco M. Cornejo-Casillo,⁸ Paul I. Costea,¹ Corinne Graaud,⁸ Francesco d'Ovidio,⁷ Stefan Engelen,⁸ Isabel Ferrera,⁹ Josep M. Gasol,⁶ Lionel Guidi,⁶⁵ Falt Hiddebrand, ¹Forian Kokoszah,¹⁰³ Cyrille Lepoive;¹² Gipsi Lina,³ Mendez,^{2,54} Julie Poulaia,⁹ Bonnie T. Poulos,⁶⁹ Marta Royo-Llonch,⁶ Hugo Sarmento,³⁴⁵ Stefanie Kandels Levels,¹⁶⁷ Tarze Oceans coordinators; Chris Boxder,¹⁰ Santh Searson,⁹⁶ Stefanie Kandels Levels,¹⁶⁷ Tarze Oceans coordinators; Chris Boxder,¹⁰ Colombia Inte Vargas,¹⁰⁴ Gathrel Gordsy,¹⁰⁵ Nigel Grinate,¹⁰⁵ Pascal Human,¹⁰⁵ Stephane Pesant,^{34,50} Sabrina Speich,⁴⁵⁶⁷ Lars Stemmann,⁴⁰⁷ Matthew B. Sullivan,⁴⁰³ Jean Welssenhach,^{52,105} Patrick Wincker,^{50,232} Eric Karsenti,^{10,17} Jereon Raes,^{3,2,64} Silvia G. Acinas,⁶ Peer Bork¹⁰⁶

OCEAN PLANKTON

Determinants of community structure in the global plankton interactome

Glpsi Lima-Mendez,^{1,2,3,4} Karoline Faust,^{1,2,3,4} Nicolas Henry,^{4,5,4} Johan Decelle,^{4,3} Sébastien Colin,^{4,5,4} Fabrizio Carcillo,^{1,2,3,7} Samuel Chaffron,^{1,2,3} J. Cesar Ignacio-Espinosa,⁴ [5 imon Roux,⁶] F Irota Vincent,^{2,6} Lucie Bittner,^{4,5,6,9} Youssef Darzi,^{2,3} Jun Wang,^{1,3} Stéphane Audie,^{4,5} Léo Berline,^{10,11} Gianluca Bontempi,⁷ Ana M. Cabello,¹² Laurent Coppola,^{10,11} Francisco M. Correijo-Castillo,¹² Francesco d'Ovidio,¹³ Luc De Meester,¹⁴ Isabel Ferrera,¹² Marie José Garet-Delmas,^{4,5} Lionel Guidl,^{10,11} Elena Lara,¹⁰ Stéphane Pesant,^{15,16} Marta Royo-Llonch,¹² Guillem Salzar,¹² Pablo Sanchez,¹² Marta Sebastian,¹² Caroline Souffreau,¹⁴ Céline Dimier,^{45,16} Mare Picheral,^{10,13} Sarah Searson,^{10,13} Stéfanie Kandels-Lews,^{17,16} Tara Oceans coordinators; Gabriel Gorsky,^{10,13} Fahrice Not,^{4,64} Hroyuld Ogata,¹⁰ Sabrina Speich,^{20,21} Lars Stemmann,^{10,11} Jean Weisseenbach,^{22,33,24} Patrick Wincker,^{22,33,24} Sitvia G. Acinas,¹³ Shinichi Sunagawa,⁴⁷ Peer Boty,^{70,55} Mathew B. Sullivan,⁴ Fric Kussenti,^{4,16}§ Chris Bowler,⁶§ Colomban de Vargas,⁴⁶§ Jeroen Rase^{1,3,5}

OCEAN PLANKTON

Environmental characteristics of Agulhas rings affect interocean plankton transport

Emilie Villar,^{1,*} Gregory K. Farrant,^{5,4}† Michael Follows,¹⁴† Laurence Garczarek,^{2,6}† Sabrina Speich,^{5,28}¶ Stöphane Audio,^{5,4} Lucie Bittner,^{5,4}† Bruno Blanke,⁵ Jonnifer R. Brund^{5,4} Christopher Brune⁴, Raffuella Casotti, Allson Ghase,⁶ Lionel Guidi,^{5,20} Christopher N. Hill,⁴ Oliver Jahn,⁴ Jean-Louis Jamet,⁵ Hervé Le Goff,^{3,4} Lonel Guidi,^{5,20} Christopher N. Hill,⁴ Oliver Jahn,⁴ Jean-Louis Jamet,⁵ Hervé Le Goff,^{3,4} Cyrille Lepolyre,⁴ Shustlen Santhi,⁴ Eleonora Scaleo,⁵ Sarah M. Schwend⁴,⁴ Simon Rous,^{4,44} Schastlen Santhi,⁴ Eleonora Scaleo,⁵ Sarah M. Schwend⁴,⁴ Adriana Zingone,⁷ Cellne Dimien,^{5,4,4} Mare Picheral,^{6,10} Sarah Scarson,^{5,10} Stefanie Kandels-Lewis,^{7,26} Targ Oceans Coordinators¶ Silvia G. Acinas,¹⁰ Peer Bork,^{7,20} Enmancel Boos,⁴ Colomban de Varga,^{5,26} Gabriel Gorely,^{4,26} Hiroyd Ogata,² Patrick Wincker,^{144,5,10} Eric Karsenti,^{4,104} Chris Bowler,^{4*} Fabrice Not,^{5,54}+††

OCEAN PLANKTON

Eukaryotic plankton diversity in the sunlit ocean

Colomban de Vargas, ^{1,30} + Stóphane Audie, ^{1,54} + Nicolas Henry, ^{1,54} + Johan Decelle, ^{1,54} Frédéric Mahé, ^{25,26} + Ramiro Logares, * Enrique Lara, ° Cédric Berney, ^{1,30} Noan Le Bescot, ^{1,30} Sobatien Colin, ^{1,26,3} Jean-Mare Aury, ⁹ Lucie Bittner, ^{10,11,21,2} Samuel Chaffron, ^{12,13,14} Micab Dunthorn, ^{9,25} Modin Fogolen, ⁹ Olga Plogatorov, ^{13,14} Hone Colin, ^{9,16} Alos Horak, ^{20,30} Micab Dunthorn, ^{9,31,20} Jean-Mare Aury, ⁹ Lucie Bittner, ^{10,11,21,25} Samuel Chaffron, ^{12,13,14} Micab Dunthorn, ^{9,31,20} Jiel Limo Monde Plogatorov, ^{13,14} Hone Colin, ^{9,16} Alos Horak, ^{20,30} Okvier Jallion, ^{12,21,20} Hol Limo Monde & Economic Mare Bitter, ^{15,10} Mare Pickeral, ^{17,16} Flora Vincent, ^{13,12,13} Adriana Zingane, ^{25,2} Celline Dimine, ^{15,20} Mare Pickeral, ^{17,16} Sarah Searson, ^{17,18} Stefanie Kandeles Lewis, ^{13,24} Targe Oceans Coordinators; Silvia G. Acinas, ⁹ Peer Back, ^{25,20} Chris Bowler, ⁹ Gabriel Gorsky, ^{7,18} Nigo Grimskey, ^{28,30} Pascul Hingam, ⁴⁰ Danielo Indicono, ⁴⁰ Fabrice Not, ¹⁶ Hineynuld Ogata, ²⁰ Pascul Hingam, ⁴⁰ Danielo Indicono, ⁴⁰ Fabrice Not, ^{8,19} Hineynuld Ogata, ²⁰ Lars Stommann, ^{17,19} Schninki Stangawa, ²⁰ Jean Weissenbach, ^{5,19,20}

Annual Reviews content online, including: • Other articles in this volume • Top cited articles • Top downloaded articles • Our comprehensive search Resurrecting the Ecological Underpinnings of Ocean Plankton Blooms

Michael J. Behrenfeld1 and Emmanuel S. Boss2

1. 热带海洋环境特征与生态系统
高温、温跃层、寡营养、
<u>营养盐的输运与·生物的基础生产过程</u>

2.人类活动的影响 –岛礁、填礁、运输、溢油

• 3. 社会、国家(资源)

a. 南海位置; b. 南沙群岛地形 Fig.1 Topography of SCS and Nansha Islands a. location of SCS; b. topography of Nansha Islands

Tab.1 Information of remote sensors

卫星传感器。	波段数₀	波段范围/μm。	分辨率/m₀	¢.
(Landsat1-5)MSS.	4₽	0.5-1.1	80+3	¢.
(Landsat3-57)TM	7⊷	0.45-2.35+2	20(险执 红 处	÷
(Landsat57)ETM₽	8₽	0.45-2.35	30(际涨组/\₩ 和会告油码)。	¢
(Lansat8)OLI	9 ₽	0.433-2.3+2	和主色仅权户	¢
AVHRR.	5₽	0.55-12.5+2	1100+3	ę
<u>SeaWiFS</u> ₊ ³	8₽	0.402-0.885	1100+3	÷
MODIS _* ²	36₽	0.402-14.385	250,500,1000~	÷
CZCS+2	6⊷	0.443-1.15+	825*	¢
MERIS.	15₽	C.	1200*	¢
COCTS	10 ₽	0.402-12.5	1100+2	÷

Fig.2 Image process of Landsat 8 OLI in Feb. 7th, 2015

a. Original true color image, b. zoom image of Yongshu Reef, c. partial image after cutting of Yongshu Reef, d. after radiation correction , atmospheric correction and cloud removing

SS distribution in the surrounding water from May, 2014 to Sep., 2015,

Yongshu Reef, Zhubi Reef, Meiji Reef (永暑礁, 渚碧礁, 美济礁)

Sphere of SS distribution in Yongshu Reef (a, b, c) and Meiji Reef(d, e) during islands and reefs building period

Introduction:

Wind induced phytoplankton bloom

Typhoon impact on Marine Ecosystem

Remote Sensing of Marine Ecosystem

Climate Changes / Natural Hazards

(1)提出了"海洋藻华的风泵调控机理"

原创性:是对半个多世纪以来的两个经典的藻华形成理论"临界 深度理论"和"富营养化"的重要补充。 推动了海洋生态遥感学科的发展