

Agriculture monitoring & retrievals

Stefano Pignatti & Simone Pascucci

ESA-MOST China Dragon 4 Cooperation

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 中欧科技合作"龙计划"第四期 **2019**年陆地遥感高级培训班

- 1. Agriculture as combination of soil & vegetation components
- 2. Crop biophysical variables retrieval with optical RS
- 3. Soil parameters retrieval with optical RS
- 4. Sampling procedures for ground measurements
- 5. Agronomical variables

Crop growth, development and yield

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

Inverse problem

Overview of the crop/plants' diversity that can be derived by EO

· eesa

NRSCC

EO related traits

A Lausch et al. Ecological Indicators 70 (2016)

Biochemical & biophysical ST • Chlorophyll a,b • α,β Carotene • Xanthophyll • Protein Protein • Nitrease	Taxonomical Spectral Traits	Physiognomic & morphological ST Leaf size, form, type Leaf anatomy Leaf angle Leaf cuticula thickness Leaf mechanical restistance Leaf dray matter content (LDMC) 	 Phenotypical ST Plant growth form Plant age structure Plant height
 Nitrogen Phosporus Lignin Cellulose Oil Plant water Wax Starch Sugar Litter decomosabi 	athway ion vity n n capapciti lity Atrea, density, size, shape Fragmentation Spatial distribution Patterns Abundance	 Specific leaf area (SLA) Leaf mass per area (LMA) Leaf corbon content (LCC) Leaf nitrogen content (LNC) Leaf phosporus content (LPC) Leaf pigment content Leaf water content 	 Plant crown size Plant life span (longevity) Plant life form Plant flammability Plant surface roughness Blossom types Pollination mode Basis colors of flowers UV reflection of flowers
Carbon Leaf absorbance Leaf conductance Leaf persistence Nutrient retention	 Diversity Neighbourhood relationships Connectivity Complexity Extent 2D / 3D architecture & layering Leaf Area Index (LAI) 	 Leaf phenology type Flowering phenology Plant phenology Land surface phenology Structural 	Aggregated ST Net primary productivity (NPP) Fraction of Photosynthetically Active Radiation (fAPAR) Biomass

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

"Agriculture and Food security" domain

EO Products		Description	Unit	EO product maturity level	Notes	
	CLAY Percentage of clay in the first 30 cm of soil		%	medium		
	SILT Percentage of silt in the first 30 cm of soil		%	medium	limited to mechanically	
	SAND	Percentage of sand in the first 30 cm of soil	%	medium	prepared bare ground	
	SOC Percentage of organic carbon in the first 30 cm of soil		%	low		

Vegetation
components

EO Products	cts		EO product maturity level	Notes
LAI	Leaf Area Index	-	high	
Cab	Chlorophyll a and b Content of in leaves per unit of area	mg cm ⁻²	high	limited to herbaceous
FPAR	Fraction of photosynthetically active radiation absorbed by vegetation cover	-	high	ciopo

BARSEE · COSA

Variables of interest for agriculture

Agricultural components

EO Products	Description	Unit	EO product maturity level	Notes
YLD	Crop production	t ha ⁻¹	low	
QN	Content of nitrogen in the aboveground biomass	%	low	limited to a cereal
GN	Nitrogen content in grain	%	low	crop to be defined
Nres	nitrate nitrogen (NO3-N-) in the soil at the end of crop cycle		low	

Require models assimilation for biophysical products (e.g. LAI, fAPAR, fCover, Albedo etc.) and their dynamics

Biophysical Variables of interest for agricultural user community

培训时间:2019年11月18日-23日 主办方:重庆大学

Survey of the user needs to highlight the most relevant RS layers in terms of:

- relevance for the Copernicus Information needs;
- algorithms readiness;
- EO data availability

Thematic Area	Id	Layer name	Score	Potential retrieval algorithms
Assessment of biophysical and biochemical variables	AGR-01	Leaf Area Index	77.8	Hybrid methods based on ANN/LUT or other machine learning algorithms e.g. GPR (Gaussian Process methods applied to vegetation canopy reflectance models (e.g. PROSAIL).
related to the crops and of agronomic interest	AGR-02	Leaf Pigments: Chlorofill a+b	77.8	Narrow-band vegetation indices; Hybrid methods based on ANN/LUT or other machine learning algorithms e.g. GPR methods applied to vegetation canopy reflectance models (e.g. PROSAIL).
Top Soil Properties	AGR-08	Soil texture	72.2	Chemometrics modelling; spectral analysis; multivariate statistics (e.g., PLSR models); ANN.
Assessment of biophysical and biochemical variables related to the crops and of agronomic interest	AGR-11	Canopy water content	66.7	Narrow-band vegetation indices; Hybrid methods based on ANN/LUT or other machine learning algorithms e.g. GPR methods applied to vegetation canopy reflectance models (e.g. PROSAIL).
	AGR-03	Leaf Pigments: Carotenoids	61.2	Narrow-band vegetation indices.
Top Soil Properties	AGR-09	Soil organic carbon content	61.2	Chemometrics modelling; spectral analysis; spectral indexes, multivariate statistics (e.g. PLSR models)
Assessment of biophysical and biochemical variables related to the crops and of agronomic interest	AGR-12	Leaf mass / area	50.0	Narrow-band vegetation indices; Hybrid methods based on ANN/LUT or other machine learning algorithms e.g. GPR methods applied to vegetation canopy reflectance models (e.g. PROSAIL).
MOTE CENCINC	XA	5.#\ +I	TH IN HA	

Tillage operations in agricultural fields make topsoil (0-30cm) properties, such as texture (clay, silt and sand) and soil organic content (SOC), measurable from the surface.

The 0.4-2.5µm spectral region has shown the capability to retrieve topsoil properties, so reducing the costs of collecting and analyzing soil samples, with great application potential, especially in the context of precision agriculture.

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

Chemometrics and multivariate calibrations are used to obtain models that relate soil properties to spectral variables, such as:

NRSCC

- multiple linear regression (MLR),
- stepwise multiple linear regression (SMLR), principal components regression (PCR),
- partial least-squares regression (PLSR), Random Forests (RF)
- Support vector machines (SVM)

(Stenberg et al., 2010; Terra et al., 2015).

· eesa

http://worldsoils2019.esa.int/

Soil properties have been spatialized by applying block kriging on the field data.

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

http://worldsoils2019.esa.int/

Grosseto (IT) experiments, 2018

中欧科技合作"龙计划"第四期 2019年陆地遥感高级培训班 培训时间:2019年11月18日-23日 主办方:重庆大学

To to notember tors I chongquig, i.i. china

Grosseto (IT) experiments, 2018

The RPIQ values depict a non optimal prediction of the considered soil variables. High RPIQ values were obtained only for clay. Similar low prediction performances are identified for airborne data (APEX and AVIRIS) for the other soil properties.

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

http://worldsoils2019.esa.int/

WRSEE ·eesa

Castaldi, F., Palombo, A., Santini, F., Pascucci, S., Pignatti, S., Casa, R..., 2016. Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon. Remote Sensing of Environment, 179, 54-65.

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

Leaf light interception

Source: Plants in Action, published by the Austra lian Society of Plant Scientists, http://plantsinaction.science.uq.edu.a u/edition1/

The sum of the reflectance R, transmittance T, and absorptance A, equals one

The reflectance can be split into two terms: a fraction, that is reflected at the leaf surface and a fraction that is caused by multiple scattering within the leaf tissues

ectral propehttp://photobiology.info/Jacq

Leafs energy capture, pigments

Kuska, M. Tet al. 2018https://doi.org/10.1515/pac-2018-0102

Leafs energy capture: pigments

(c) 0.6 0.5 0.4 0.3 0.2 0.1 0 400 450 500 550 600 650 700 750. Wavelength, nm

Leaves with widely varying pigment contents and composition.

- green shaded area is controlled by Chlorophyll;
- red shaded area: Anthocyanins and Chl;
- grey shaded area: jointly by Chl, Carotenoids, AnC and Flavonoids

· eesa

NRSCC

Leafs energy capture, pigments

Absorption spectrum of caronetoids and chlorophill a-b

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

- Radiative transfer models of leaf biophysical processes have been used to directly estimate biochemical composition and structural characteristics.
- RTM is used to study spectral transmission or signature of plants, light reflected or emitted from plant and amount of energy absorbed.
- There are two main categories of RTMs:
- Homogeneous Models
- Heterogeneous Models

RTM

PROSAIL Model: PROSPECT + SAIL

- PROSPECT: determine leaf reflectance and transmittance signatures in the optical domain;
- SAIL: canopy reflectance models.

S2ToolBox

https://step.esa.int/docs/extra/ATBD_S2ToolBox_L2B_V1.1.pdf

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

RTM: PROSAIL

1. Chlorophyll a + b concentration **Cab** [µg/cm2]

NRSCC

- 2. Equivalent Water Thickness **Cw** [g/cm2]
- 3. Dry Matter Content Cm [mg/cm2]
- 4. Leaf length / Leaf height **hSpot** [m/m]
- 5. Carotenoid content, **Car** [µg/cm2]
- 6. Brown pigment content **Cbrown** [-]
- 7. Structural Coefficient N [-]
- 8. Leaf Area Index LAI [m2/m2]
- 9. Average leaf angle Angl [°];
- 10. Soil Soil brightness factor **psoil** [-];
- 11. Diffuse/direct radiation Skyl [-]
- 12. Solar zenith angle between sun position and with respect to zenith **tts** [°]
- 13. Observer zenith angle between observer (sensor) position and with respect to zenith. **tto** [°]
- 14. Relative azimuth angle between sun sensor position with respect to North. **psi**[°]

· eese

Sensitivity Analysis

18-23 November 2019 | Chongqing, P.R. China

Global Sensitivity Analysis of the coupled ROSPECT-5b and 4SAIL models

NRSCC

·eesa

Interactive Visualization of Vegetation Reflectance Models (IVVRM) tool

https://enmap-box-Imu-vegetation-apps.readthedocs.io/en/latest/

UNRSCC

· eesa

Vegetation Reflectance Models IDL tool

S2 reflectance inverted with the IDL code

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

SNRSCC

VNIR Hyperspectral on drone

中欧科技合作"龙计划"第四期 2019年陆地遥感高级培训班 培训时间:2019年11月18日-23日 主办方:重庆大学

· eesa

中欧科技合作"龙计划"第四期 2019年陆地遥感高级培训班 培训时间:2019年11月18日-23日 主办方:重庆大学

· eesa

Vegetation variables was retrieved by using different approaches:

- statistical i.e. build expressions (fitting techniques) to relate spectral bands to specific biophysical parameter. They can be parametric or not parametric
- based on the inversion of RTM, i.e. numerical optimization and LUT based inversion. Various regularization strategies are implemented to optimize the inversion, including:
 - i) the use of prior knowledge to restrict input variables variability;
 - ii) the use of different cost functions;
 - iii) the use of multiple best solutions of the inversion instead of the single best solution.

NN applied to PROSAIL

中欧科技合作"龙计划" 第四期 2019年陆地遥感高级培训班 培训时间:2019年11月18日-23日 主办方:重庆大学

· eesa

NRSCC

estimate the leaf area index (LAI) using canopy reflectances from an hyperspectral satellite sensor

Empirical relationship

Crop spectrum

atoms/files/A7-

blic/

s/pal

https://prd-wret.s3-us-west-2.amazonaws. hyperspectral-UND-thenkabail-3c.pdf

BNRSCC

· eesa

Dependent variables

Reflectances or vegetation index or other optical related variables. For a selection of possible vegetation index: https://www.indexdatabase.de/

Nr.	Name	Abbrev.	General Formula	Specific Formula	Calculated
1	Atmospherically Resistant Vegetation Index	ARVI	NIR-RED-y(RED-BLUE) NIR+RED-y(RED-BLUE)	$\frac{9-5-y(5-1)}{9+5-y(5-1)}$	Automatic
2	Atmospherically Resistant Vegetation Index 2	ARVI2	$-0.18 + 1.17 \left(\frac{\text{NIR}-\text{RED}}{\text{NIR}+\text{RED}} \right)$	$-0.18 + 1.17 \left(\frac{g_{-5}}{g_{+5}}\right)$	Automatic
	Canopy Chlorophyll Content Index	CCCI	NIR-rededge NIR+rededge NIR-Red NIR+Red	$\begin{array}{c} g_{-S} \\ g_{+S} \\ \hline g_{-Red} \\ g_{+Red} \end{array}$	Automatic
	Chlorophyll Absorption Ratio Index	CARI	$\left(\frac{\frac{700\text{nm}}{670\text{nm}}}{\left(a^{2}+1\right)^{0.5}}\right)\frac{\sqrt{\left(a\cdot670+670\text{nm}+b\right)^{2}}}{\left(a^{2}+1\right)^{0.5}}$	$\left(\frac{5}{4}\right) \frac{\sqrt{\left(\frac{5-9}{150} \cdot 670 + 4 + \left(3 - \left(\frac{5-9}{150} \cdot 550\right)\right)\right)^2}}{\left(\frac{5-9}{150^2} + 1\right)^{0.5}}$	Automatic
	Chlorophyll Absorption Ratio Index 2	CARI2	$\left(\frac{ (a\cdot670+670+b) }{(a^2+1)^{0.5}}\right) \left(\frac{700}{670}\right)$	$\left(\frac{\left \left(\frac{5-\vartheta}{150}\cdot \cancel{4}+\cancel{4}+\cancel{3}-(a\cdot\cancel{3})\right)\right }{(a^2+1)^{0.5}}\right)\left(\frac{\cancel{5}}{\cancel{4}}\right)$	Automatic
	Chlorophyll Green	Chlgreen	$\left(\frac{760:800}{540:560}\right)^{(-1)}$	$\left(\frac{\gamma}{s}\right)^{(-1)}$	Automatic
	Chlorophyll Red-Edge	Chlred-edge	$\left(\frac{760:800}{690:720}\right)^{(-1)}$	$\left(\frac{\gamma}{5}\right)^{(-1)}$	Automatic
	Chlorophyll vegetation index	CVI	$NIR \frac{RED}{GREEN^2}$	$g \frac{5}{3^2}$	Automatic
	Green leaf index	GLI	2GREEN-RED-BLUE 2GREEN+RED+BLUE	$\frac{23-5-1}{23+5+1}$	Automatic
D	Leaf Chlorophyll Index	LCI	850-710 850+680	<u>8-5</u> 8+4	Automatic
1	MCARI/MTVI2	MCARI/MTVI2	$\frac{((700nm-670nm)-0.2(700nm-550nm))\left(\frac{700nm}{670nm}\right)}{\left(1.5\frac{1.2(800nm-550nm)-2.5(670nm-550nm)}{\sqrt{(2800nm+1)^2-(6800nm-5\sqrt{670nm})-0.5}}\right)}$	$\frac{((5-4)-0.2(5-\beta))\left(\frac{5}{4}\right)}{\left(1.5\frac{1.2(5-\beta)-2.5(4-\beta)}{\sqrt{(28+1)^2-(68-5\sqrt{4})-0.5}}\right)}$	Automatic
2	Normalized Difference 800/680 Pigment specific normalised difference A2, Lichtenthaler indices 1, NDVIhyper	ND800/680	800nm-680nm 800nm+680nm	$\frac{8-4}{8+4}$	Automatic
3	Normalized Difference NIR/Red Normalized Difference Vegetation Index, Calibrated NDVI - CDVI	NDVI	NIR-RED NIR+RED	<u>8-4</u> 8+4	Automatic
4	Normalized Difference Vegetation Index 690-710	NDVI690-710	NIR-690:710 NIR+690:710	<u>9-5</u> <u>9+5</u>	Automatic

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

Fitting Techniques

- Are very fast when determined
- Training could be time demanding when using large data set
- Accuracy is strictly dependent by the training set
- Normally refers to a single variable of interest

Simple regression: is a statistical tool for quantifying the relationship between just one independent variable and one dependent variable based on observations

Machine learning: is more complex and can be based based on the value of one or multiple predictor variables (x).

Fitting Techniques

Machine Learning perform better; decreased Performances on ground dataset

GPR: Gaussian Process Regression	RFTB: Random Forest Tree Bagger	BooT: boosting trees	PLSR: partial least square regression	RFFE: random forest fit ensemble
BagT: Bagging Trees	NN: Neural Network	LSR: least squares linear regression	RegT: regression trees	SNAP

Biophysical Variables vs crop processes

F. Baret web resources

· eesa

NRSCC

Leaf area Index (LAI) definition

LAI is defined as half the developed area of photosynthetically active elements of the vegetation per unit horizontal ground area [m2/m2].

- Is an intrinsic canopy primary variable that should not depend on observation conditions.
- LAI practically, quantifies the thickness of the vegetation cover.
- LAI is strongly non-linearly related to reflectance
- LAI is mainly corresponding to the green elements: the correct term to be used would be GAI (Green Area Index)

Leaf area Index (LAI)

Leaf area Soil area Barrett-Lennard, Leaf area I A Soil area , 2003

SNRSCC

· eesa

fAPAR definition

- FAPAR is defined as the fraction of photosynthetically active radiation (PAR) absorbed by a vegetation canopy. PAR is the solar radiation reaching the canopy in the 0.4–0.7 µm wavelength region.
- Ground-based estimates of FAPAR require the simultaneous measurement of PAR above and below the canopy.
- FAPAR is a key variable in the assessment of vegetation productivity and yield estimates.
- Fraction of absorbed photosynthetically active radiation (FAPAR) (400-700nm) is one of the main trait used in the production efficiency models.

NRSCC

· eesa

fAPAR definition

$APAR=PAR_{inc}-PAR_{out}-PAR_{trasm}+PAR_{soil}$ quantity absorbed by the veg.

incoming PAR (PAR_{inc}), reflected by canopy and soil (PAR_{out}), transmitted through the canopy (PAR_{transm}); reflected by the soil (PAR_{soil})

FAPAR=APAR/PARinc

 $FAPAR = [(PAR_{inc} - PAR_{out}) - (PAR_{trasm} - PAR_{soil})]/PAR_{inc}$; norm. between 0-1

fAPARgreen=fAPAR×(LAIgreen/LAItotal)

A common approach is the use of vegetation indices (VI), combinating visible and near-infrared reflectance

Vegetation indices

Vegetation indices are designed to maximize sensitivity to the vegetation characteristics while minimizing confounding factors such as soil background reflectance, directional, or atmospheric effects.

Indices exploit specific spectral properties of vegetation

Are potentially illimited

· eesa

NRSCC

Leaf area Index (LAI)

Index	Description	Formula	Reference
	Existing	indices	
NDVI NDVI		$\frac{\rho_{\rm NIR} - \rho_{\rm red}}{\rho_{\rm NIR} + \rho_{\rm red}}$	[15]
NDVI _{Red-edge}	Red-edge NDVI	$\frac{\rho_{\rm NIR} - \rho_{\rm RR}}{\rho_{\rm NIR} + \rho_{\rm RE}}$	[41]
MSR	MSR index	$\frac{\rho_{\rm NIR}/\rho_{\rm red}-1}{\sqrt{\rho_{\rm NIR}/\rho_{\rm red}+1}}$	[38]
MSR _{Red-edge}	Red-edge MSR index	$\frac{\rho_{\rm NIR}/\rho_{\rm RE}-1}{\sqrt{\rho_{\rm NIR}/\rho_{\rm RE}+1}}$	[34]
CIgreen	Green CI	$\frac{\rho_{\text{NIR}}}{\rho_{\text{green}}} - 1$	[42]
CI _{Red-edge}	Red-edge CI	$rac{ ho_{\mathrm{NIR}}}{ ho_{\mathrm{RE}}} = 1$	[43]
	Improved	1 indices	
NDVI _{red& RE}	Red and red-edge NDVI	$rac{ ho_{\mathrm{NIR}} - (a^* ho_{\mathrm{red}} + (1-a)^* ho_{\mathrm{RE}})}{ ho_{\mathrm{NIR}} + (a^* ho_{\mathrm{red}} + (1-a)^* ho_{\mathrm{RE}})}$	-
MSR _{red& RE}	Red and red-edge MSR index	and red-edge MSR index $\frac{\rho_{\text{NIR}}/(a^*\rho_{\text{red}} + (1-a)^*\rho_{\text{RE}}) - 1}{\sqrt{\rho_{\text{NIR}}/(a^*\rho_{\text{red}} + (1-a)^*\rho_{\text{RE}}) + 1}}$	
CIred& RE	Red and red-edge modified CI	fied CI $\frac{\rho_{\rm NIR}}{a^* \rho_{\rm red} + (1-a)^* \rho_{\rm RE}} - 1$	

Xie, Q., Dash, et al. (2018 IEEE Journal of selected topics in applied earth observations and remote sensing, 11(5), 1482-1493.

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

WRSCC COSA

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING

18-23 November 2019 | Chongqing, P.R. China

Empirical Transfer Functions

Vegetation indices, based on spectral behavior of vegetation, are widely used for monitoring, analyzing, and mapping temporal and spatial variations of some biophysical parameters.

They require an accurate calibration and validation base on ground measurements.

A.A. Gitelson et al. / Remote Sensing of Environment 80 (2002) 76-87

NRSCC

· eesa

Estimation of leaf chlorophyll

Casa, R., Castaldi, F., Pascucci, S., Pignatti, S., 2014. Chlorophyll estimation in field crops: an assessment of handheld leaf meters and spectral reflectance measurements. Journal of Agricultural Science, 153, 876-890.

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

中欧科技合作"龙计划"第四期 2019年陆地遥感高级培训班 培训时间:2019年11月18日-23日 主办方:重庆大学

eest

NRSCC

Estimation of leaf chlorophyll from hyperspectral remote sensing

Table 7. Results of the calibration models for the reflectance indices and the PLSR on the experimental dataset of Table 1. The coefficients correspond to the relationship chlorophyll= $a+b\times$ index for the linear model and chlorophyll= $a+b\times$ index+ $c\times$ index² for the quadratic model. Significance of the coefficients is reported

Index	Equation	a	b	с	R ²	RMSE (µg/cm²)	RPD	RRMSE (proportion)
ChINDI	Linear Quadratic	- 19·1 (P<0·01) 5·79 (ns)	149·90 (P<0·01) 13·79 (ns)	169·36 (P<0·01)	0∙70 0∙73	11·18 10·73	1.83 1.91	0·244 0·234
Cl _{red_edge}	Linear Quadratic	12·15 (P<0·01) -0·86 (P<0·01)	95·96 (P<0·01) 174·88 (P<0·01)	-94·65 (P<0·01)	0·72 0·75	10·95 10·39	1.87 1.97	0·239 0·227

Table 8. Results of the calibration models for the reflectance indices and the PLSR on the synthetic dataset simulated by PROSPECT. The coefficients correspond to the relationship chlorophyll= $a+b\times$ index for the linear model and chlorophyll= $a+b\times$ index+ $c\times$ index² for the quadratic model

Index	Equation	a	b	с	R ²	RMSE (μg/cm ²)	RPD	RRMSE (proportion)
Cl _{red_edge}	Linear Quadratic	20·2 1·3	80-0 180-6	-131.9	0-64 0-64	2·98 2·94	1.63 1.65	0-059 0-059
ChIRE _{opt}	Linear Quadratic	9·8 - 2·8	23-6 38-4	- 4.3	0-63 0-63	3-00 3-00	1.62 1.62	0-060 0-060

Casa, R., Castaldi, F., Pascucci, S., Pignatti, S., 2014. Chlorophyll estimation in field crops: an assessment of handheld leaf meters and spectral reflectance measurements. Journal of Agricultural Science, 153, 876-890.

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

VIs in SNAP

The following table summarizes the radiometric indices provided with the toolbox

Name	Purpose/Classification	Short Description	SAVI	Soll Adjusted Vegetation Index	This index attempts to be a hybrid between the ratio-based indices and the perpendicular indices
NDVI	Normalized Difference Vegetation Index	The well-known classical vegetation index. The NDVI composes a measurement for the photosynthetic activity and is strongly in correlation with density and vitality of the vegetation	TSAVI	Iransformed Soil Adjusted Vegetation Index	The lader senses that the self-line has sublicered and V maker as of New select to start the sectories balance
DVI	Difference Vegetation Index	This index is sensitive to the amount of vegetation			Among and a second se
RVI	Ratio Vegetation Index	The simplest ratio based index, it is also called the Simple Ratio (SR). It indicates the amount of vepetation. It also reduces the effects of atmosphere and topography	MEAVED	Modified Soil Adjusted Segretation Index	The basic dea of HSVY was to provide a variable correction factor 4. The correction factor word is based on the product of NOVI and WOVI Resistable. It is used as Treatment wave and subclided 1. HSRVTP-11 as the 1 factor is HSRVTPA.
PVI	Perpendicular Vegetation Index	This index could be considered a generalization of the DVI, which allows for soil lines of different slopes.	MSAVIZ	Lindex	They thus inductively solve the Terration where HSAVI(a) - HSAVI(a 1) They thus inductively solve the Terration where HSAVI(a) - HSAVI(a 1) The index to research the source of the beliefsters of a satellite issues
	Infrared Percentane Venetation Teday	This lader is functionally analysis to MYOF and POF but it only rannes in value from 0.0 + 1.0	BI	frightness Index	rans meet is representing one everyge is not impositive an advantite image
IPVI	Paranea Fercentade Tederarou Parex	time times is reactioning optimization to no it is man to be and tangen in a same time of - 1.55	BI2	The second Brightness Index	This index is representing the average of the brightness of a satellite image. The result looks like a panchromatique image with the same resolution of the original image.
WDVI	Weighted Difference Vegetation Index	WOVI is a mathematically simpler version of PVI, but it has an unrestricted range	RI	gedness index	The Reduces Index algorithm was developed to identify soil colour variations
TNDVI	Iransformed Normalized Difference Vegetation	TNDVI adjorithm indicates a relation between the amount of green biomass that is found in a pixel	<u>cı</u>	<u>C</u> olour Index	The Colour Index algorithm was developed to differentiate soils in the field
GNDVI	Green Normalized Difference Vegetation Index	CRDVI is more sensible than RDVI to identify different concentration rates of chiorophyli, which is highly correlated at nitrogen.	NDWI	Normalized Difference Water Index	This index is a measure of Bipold water molecules in wapstation canopies that interacted with the incoming satur radiation.
GEMI	Global Environmental Monitoring Index	Was developed to eliminate the need for a detailed atmospheric correction by constructing a stock atmospheric correction for the veptation index	NDW12	The second Normalized Difference Water Index	This index was developed to detect surface waters is wetland environments and to allow for the measurement of surface water extent.
ARVI	Atmospherically Resistant Vegetation Index	This index takes advantage of the different scattering responses from the blue and red band to retrieve information regarding the atmosphere opacity	MNDWI	Modified Normalized Difference Water Index	This index was developed to onhance open water features, while efficiently suppressing and even removing hull up 🔚 noise as well as vegetation and soil noise.
NDI45	Hormalized Difference Index	This index algorithm is more linear, with less saturation at higher values than the NDVI.	NDPI	Normalized Difference Fond Index	The KOPI algorithm makes it possible not only to distinguish small ponds and water bodies (down to 0.01 ks), but also to differentiate vegetation inside ponds from that in their surroundings
мтсі	Meris Ierrestrial Chiorophyli Index	This index was developed for estimating chlorophyll content from HIRIS (Hedium Resolution Imaging Spectremeter) data	NDTI	Normalized Difference Jurbidity Index	This index was developed to allow for the measurement of water turbidity.
MCARI	Modified Chlorophyll Absorption Ratio Index	This index was developed to be responsive to both leaf chlorophyll concentrations and ground reflectance.			
REIP	Red-Edge Inflection Point index	This index was developed for applications in biomass and nitropen (X) uptake measurment/management in heterogeneous fields.			
S2REP	The Sentinel-2 Red-Edge Position index	We index is haved on linear interpolation as presented by Guyet and Barel (1988). The reflectance at the inflexion point is estimated and in turn, the REP is retrieved through interpolation of 5-2 hand positioned on the RE daps.	re		
IRECI	Inverted <u>Red-Edge</u> <u>Chlorophyll</u> Index	This index algorithm incorporates the reflectance in four hands to estimate canopy chicrophyli content			
PSSRa	Pigment Specific Simple Ratio (chlorophyll) index.	This index was developed to investigate the potential of a range of spectral approaches for quantifying pigments at the scale of the whole plant canopy.			

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

Accuracy metrics

Statistical metrics for accuracy/error assessment of the parameters retrieval

- Bias
- Relative Bias
 - Coefficient of determination
 - Root mean square error
- Relative RMSE
- Mean Absolute Error
- Ratio of performance to deviation
- Ratio of performance to interquartile range

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

Spatial sampling vs GSD

18-23 November 2019 18-23 November 2019

5m gsd

1年陆地遥感高级培训班 118日-23日 主办方:重庆大学

30m gsc

Sampling strategies

Theoretical boundaries in the pixel size-pixel purity space used to define the

requirements for pixel crop growing

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

ESU

http://w3.avignon.inra.fr/valeri/documents/VALERI-RSESubmitted.pdf

ESU applied to the S2 Maccarese test site

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

campaigns carried out during the durum crop season from February to April 2018 (S2)

31-gen; LAI, Chl 16-feb; LAI, Chl, biomass 06-apr; LAI, Chl 20-apr; LAI, CHL, biomass

In situ data collection: field campaign in Italy (Maccarese 2018)

Study area is the Maccarese farm located in Central Italy, which is the second largest Italian private farm with about 3500 ha of agricultural fields (typically 10 ha or larger) was selected as study area.

The farm is equipped with VRT and yield maps machinery.

MAIS INSILATO	781,59 Ha
AFFITTO	406,63 Ha
GRANO DURO S.	303,35 Ha
ORZO INSILATO	166,87 Ha
TRITICALE	131,34 Ha
FAVINO	111,95 Ha
GRANO DURO M.	111,34 Ha
GRANO TENERO INSI	90,59 Ha
MEDICA	36,60 Ha
INCOLTO	32,57 Ha
VIVAIO	31,70 Ha
ERBAIO / FIENI MI	23,38 Ha
MACCHIA MEDIT.	21,40 Ha
STALLA	12,59 Ha

RS data collection in Italy (Maccarese 2018)

Venus / S-2 reflectances

Venus

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18–23 November 2019 | Chongqing, P.R. China

RS Validation using field campaign data in Italy (Maccarese 2018)

Chl R² = 0,27; RMSE = 8,06

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

NRSCC

LAI SNAP $R^2 = 0,85$; RMSE = 0,74

LAI R² = 0,71; RMSE = 0,77

中欧科技合作"龙计划"第四期 2019年陆地遥感高级培训班 培训时间:2019年11月18日-23日 主办方:重庆大学

· eesa

RS Validation using field campaign data in Italy (Maccarese 2018)

S2 & Venus vs time

中欧科技合作"龙计划"第四期 2019年陆地遥感高级培训班 培训时间:2019年11月18日-23日 主办方:重庆大学

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

RS Validation using field campaign data in Italy (Maccarese 2018)

S2/Venus MTCI vs Chl

100

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

中欧科技合作"龙计划 2019年陆地谣威高级培训班 培训时间:2019年11月18日-23日 主办方:重庆大学

80

60

Assimilation of RS data into crop models:

中欧科技合作

"龙计划

2019年陆地遥感高级培训班

培训时间:2019年11月18日-23日 主办方:重庆大学

example of LAI, Biomass and Yield in China

Analysis about:

- LAI
- Biomass
- Height
- Yield
- Soil Moisture
- Soil Roughness

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING

18-23 November 2019 | Chongqing, P.R. China

RS variables assimilation in crop models

Yangling, Shaanxi, (China)								
			R. Russia	Angara R.	Argun' R.			
		45° Lake Baikhash	Burgin	Mongolia	Xiaota	anshang, Beijing (China)		
			•Yining •Urumqi	S S	Changchun •			
Туре	Date	Measurements		~	Туре	Notes		
Field Data	30/3/2013	High, density, SPAD, TDR, LAI, Fresh	hina Yumen.	Huang	Climate	Precipitation, Average wind speed, Temperature (min, max, average), Sunshine duration		
Field Data	27/4 2013	High, density, SPAD, TDR, LAI, Fresh and dry Biomass	Golmby	Yinchuan H. Si Xining Taiyu	Sowing Date	27 Sep, 7Oct, 20 Oct 2008 25 Sep, 5 Oct, 15 Oct 2009 25 Sep, 5 Oct, 15 Oct 2010		
Field Data	1/6/2013	TDR, Yield	inhe 5	Xi'an• 💙	Yield	Grain yield was measured following maturation from samples obtained from a 1.5 m 2 area in each plot,		
Climate	2013	Precipitacion, Average wind speed, Temperature (min, MAX, average), sunshine duration	Brahmaputra R. Lhasa	Chengdu Chongqing Changsh	Field Management	with three replications for each treatment. List of different management, required only by Aquacrop model		
HJ1B	05/03/2013	multispectral	Bhutan	M. Suivana	_	Biomass was determined from a 0.25 m ² area by		
HJ1B	20/03/2013	multispectral	Bangladesh	Kunming Xun B.	Biomass	randomly cutting four representative plants from		
HJ1B	28/03/2013	multispectral	Imawaddy	Nannii		to a constant weight, and final dry weight recorded.		
HJ1A	30/03/2013	multispectral	Thanlwin	Vietnam		Canopy Cover was eximated as function of LAI		
Landsat 8	03/04/2013	multispectral	Bay of Myanmar	Mekeng Gulf of Haik	Canpy Cover	(II-COR Inc., Lincoln, NF, USA) was used in		
HJ1A	07/04/2013	multispecral	0 km	Sea 1		measuring for determination of LAI.		
HJ1A	26/04/2013	multipectral	AN Geographixs	Thailand	Irrigation	Day of irrigation, amount of irrigated water (in mm)		
HJ1A	11/05/2013	multispectral	www.maps.com	Cambodia	Soil Characteristics	Information s about: Field Capacity, Wilting Point and Saturation		

RS variables assimilation in crop models

·eesa

SNRSCC

RS variables assimilation in crop models

Lai, yield VALIDATION

LAI and Canopy Cover validation

Comparison of two different models

Regional Applicarion results: Yangling Rural Area

2019 ADVANCED INTERNATIONAL TRAINING COURSE IN LAND REMOTE SENSING 18-23 November 2019 | Chongqing, P.R. China

