
Object-based Land Cover Classification 

with Deep Learning Framework 
Yifang Ban, PhD, Professor 

 KTH-Royal Institute of Technology 

Objective:  

The purpose of this tutorial is to implement an object-based land cover classification 

using deep learning technique such as Convolutional Neural Networks (CNN). You will 

be introduced an image segmentation method named SLIC, and how to use Tensorflow 

to conduct CNN-based image classification and how to visualize data and network 

architecture with TensorBoard. At the completion of the tutorial, you will be able to 

classify remote sensing images with deep learning and conduct accuracy assessment. 

(Note: It is recommended to run “Step0_Data_Preparation.py” in advance, because 

the data sampling procedure may take 25min.) 

 

0. Check Environment and Run code “Step0_Data_Preparation.py” 

Open pyCharm, and click the Terminal, find and set your work path with “cd dataPath”. 

 (wechat group)

 



List all conda environment with “conda list env”, and then select the lab environment 

and activate it with “conda activate lab”, then check tensorflow version as follows. 

 

Find the path that stores data and codes, use pyCharm to open this directory. Double-

click “Step0_..._.py”, select python.exe belongs to environment lab, then run with  

  by right clicking mouse, and the code can automatically 

obtain its current working directory with os.getcwd(). 

 

  

1. Sentinel-2 Multispectral Data Visualization using Spectral Indexes 

This are two image files in “.tif” format: 

(1) “ChongQing_S2_2017_20m.tif” is the mosiaced Sentienl-2 image mosaic 

containing five bands (Red, Green, Blue, NIR and SWIR) and three spectral 

indexes including NDVI, NDWI and NDBI (see Table 1) 

Band_1 Band_2 Band_3 Band_4 Band_5 Band_6 Band_7 Band_8 

Blue Green Red NIR SWIR NDVI NDWI NDBI 

Table 1: Bands contained in “ChongQing_S2_2017_20m.tif” 

 

(2) “ChongQing_LC_2017_20m.tif” is the reference land cover types including 

urban, vegetation, crop ad water. 

 



1.1 Check Sentienl-2 Data with SNAP 

a. When you load the S2 data in SNAP, you will see 8 bands; double click one of 

these bands to visualize the corresponding grey scale image in the main window 

and its histogram in the lower left window (see Fig 1.1).  

 
Fig 1.1 Visualize image band and histogram using SNAP 

 

b. In the file browser window, right click the “ChongQing_S2_2017_20m” file, 

and select “Open RGB Image Window”, then select Red = band3, Green=band2 

and Blue=band1 to visualize a true color image. Try to visualize different bands 

composites such as [NIR, Green, Blue] and [SWIR, Geeen, Blue] etc. 

  

 
Fig 1.2 Open RGB composite 



1.2 Compute a spectral index such as NDVI, NDWI and NDBI 

Considering the following formulas for each of the spectral indexes: 

a. NDVI (Normalized Difference Vegetation Index) 

NDVI = (NIR - Red)/(NIR+Red) 

b. NDWI (Normalized Difference Water Index) 

NDWI = (Green - SWIR)/ (Geen + SWIR) 

c. NDBI (Normalized Difference Built-up Index) 

NDBI = (SWIR - NIR)/(SWIR + NIR) 

To compute a spectral index using the Band Maths tool provided by SNAP (Note: These 

three spectral indexes have been contained in ChongQing_S2_2017_20m.tif to run code 

Step0, try to produce them by yourself): 

Raster -> Band Maths -> Edit expression, and another NDVI band will be produced, 

set palette for NDVI and have a look. Similarly, NDWI and NDBI can be generated. 

 

  

2. SLIC-based Superpixel Segmentation and Sampling 

2.1 SLIC segmentation 

In this section you will investigate different input parameters of the SLIC technique to 

understand the segmentation process. 

Here is the code line where the slic function is used to generate the segments. 

segments = slic(image, n_segments=30000, compactness=30) 

- image can be 2d or 3d, and grayscale or multichannel,  



- n_segments denotes the approximate number of labels in the segmented output image, 

- compactness balances color proximity and space proximity: Higher values give more 

weight to space proximity, making superpixel shapes more square/cubic.  

It is recommended to explore possible n_segments and compactness values on a log 

scale, e.g., 0.01, 0.1, 1, 10, 100 to find a good dimension and shape of the segments 

(see Fig 2.1)  

(Ref:https://scikitimage.org/docs/dev/api/skimage.segmentation.html#skimage.segme

ntation.slic) 

 

Fig. 2.1 Superpixel Segmentation Map 

2.2 Superpixel-based Data Sampling 

Centering at the geometric centroid of each superpixel, a cubic neighborhood of size 

w*w*c can be sampled, where w denotes the neighborhood window while c denotes the 

number of channels. (Note: The sampling procedure may take 25min or more, please 

get familiar to the following material.) 

samples, labels =  superpixel_based_patch_sampling(segments, Data, winSize, refMap) 

- samples: n*w*w*c 

- labels: n*1 

2.3 Balance Training Data 

Due to the fact that the number of training samples belongs to different classes is so 

different, it is recommended to transform them into class-balanced one. Here, 2000 

samples are randomly chosen for each class, and they will be taken as the training 

samples for deep neural networks. 

3. Convolutional Neural Networks (CNN)  

3.3 Data/Feature Visualization 

Tensorboard Projector can be exploited to visualize the sample distribution with t-

distributed stochastic neighbor embedding (t-SNE)  

[TensorboardX : https://tensorboardx.readthedocs.io/en/latest/tensorboard.html ].  

https://scikitimage.org/docs/dev/api/skimage.segmentation.html#skimage.segmentation.slic
https://scikitimage.org/docs/dev/api/skimage.segmentation.html#skimage.segmentation.slic
https://tensorboardx.readthedocs.io/en/latest/tensorboard.html


 

 

writer.add_embedding(featImg, metadata=labels, label_img = subImg) 

-featImg: n*d, where n is the number of samples, d is the dimension of features 

-metadata: labels corresponding to featImg, of size n*1 

-label_img: n*w*h*c, where w, h and c denote width, height and number of channels 

of image set to visualize. 

Try different bands for training and visualization via band4train and band4projector. 

 

 

3.2 CNN Model 

The follow codes show how to use keras layers to build a simple CNN model, taking 

the input data of shape 25*25*3 as example, and all samples belong to four classes, i.e., 

urban, crop, vegetation and water.  

Please refer to TensorFlow  https://tensorflow.google.cn/ if more details are needed. 

Choose an optimizer and loss function for your model. 

 

  

https://tensorflow.google.cn/


3.3 Model Training 

Configure parameters for your model fitting such as epoch and callback. 

  

3.4 Visualize Your Model 

By using tensorboard_callback and writer.add_embeddings, try to run your tensorboard 

server in your local machine by inputing the following code in Terminal (in red box). 

 

> tensorboard –logdir runs 

 

 
 

 

Fig 3.1 Learning Curve 



 

Fig 3.2 Network Archtecture 

Open the url localhost://6006 via your browser (it is recommended to use Google 

Chrome). Fig 3.1 shows the learning curve with scalars, Fig 3.2 shows the network 

architecture with graphs, and Fig 3.3 visualize the data distribution with Projector, try 

different dimension reduction methods, check the difference. The Projector may not 

work well in other browsers except google chrome. 

 

Fig 3.3 Data Visualization with Projector 



 

4. Apply the trained model 

In this section, we will apply the trained model to predict a label for each superpixel, 

and transform the labeled superpixels label into a land cover map. 

4.1 Predict labels for superpixel with the trained model 

Apply the trained model on all superpixel samples, and obtain the corresponding labels. 

 

pred = model.predict(dataset0) 

predLabels = np.argmax(pred, axis=1) 

 

4.2 Transform labeled superpixel into a land cover map 

How will you transform labeled superpixels into a land cover map?  

The easiest way is to find the indexes for each superpixel, and then assign them with 

the same superpixel label predicted by the trained model. However, it is quite slow in 

practice. Another more efficient way is to find the indexes for all superpixels (segments) 

with the same predicted label (see the following code). 

  

Fig 4.1 shows the superpixel-based classification results predicted by CNN. Try to 

adjust the parameters such as network architecture, optimizer, and epoch, how will the 

predicted map look? 

 

 

Fig 5.1 Map predicted by CNN (epoch=10) 



5. Accuracy Assessment 

In this section, we will conduct accuracy assessment by comparing the classified map 

with the reference map. There are two accuracy assessment schemes: pixel-based and 

superpixel-based accuracy assessment, which do you think is more reliable to assess 

the CNN results? 

“Step3_Accuracy_Assessment.py” show how to visualize pixel-based and superpixel-

based reference maps, and a superpixel-based accuracy assessment method is given. 

Fig 5.1 shows the pixel-based reference map, while Fig 5.2 shows the superpixel-based 

reference map, try to discuss their characteristic and difference between them. 

Fig 5.3 presents the code for conducting accuracy assessment with sklearn.metrics. 

Plese refer to the following url: http://lijiancheng0614.github.io/scikit-

learn/modules/classes.html#module-sklearn.metrics 

C_ij: number of superpixels belong to class-i are classified into class-j. 

- True Label 

 

 

Predicted 

Label 

- Urban Crop Vegetation Water Recall 

Urban C00 C01 C02 C03  

Crop C10 C11 C12 C13  

Vegetation C20 C21 C22 C23  

Water C30 C31 C32 C33  

Precision     Acc/F1 

Table 3. Four-Class Confusion Matrix. 

The accuracy, precision, recall and F1-score can be computed with the formula: 

acc =  
∑ 𝐶_𝑘𝑘3

𝑘=0

∑ ∑ 𝐶_𝑖𝑗3
𝑗=0

3
𝑖=0

 precisionk =
𝐶_𝑘𝑘

∑ 𝐶_𝑖𝑘3
𝑖=0

  recallk =
𝐶_𝑘𝑘

∑ 𝐶_𝑘𝑗3
𝑗=0

 k=0,1,2,3.  

[class k F1]: F1k =  
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑘∗𝑅𝑒𝑐𝑎𝑙𝑙𝑘

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑘+𝑅𝑒𝑐𝑎𝑙𝑙𝑘
 

 

Fig 5.1 Pixel-based reference map 

http://lijiancheng0614.github.io/scikit-learn/modules/classes.html#module-sklearn.metrics
http://lijiancheng0614.github.io/scikit-learn/modules/classes.html#module-sklearn.metrics


 

Fig 5.2 Superpixel-based reference map 

 

 

Fig 5.3 Code for accuracy assessment 

 

 

Fig 5.4 Accuracy Statistics 

 

 

Congratulations! 

=================> End <================= 



Appendix: Python Environment Configuration 

puzhao@kth.se 

 

Step 0: Install Anaconda and PyCharm 

Anaconda (Python 3.7 64-bit) https://www.anaconda.com/distribution/#windows 

PyCharm-Community 

https://www.jetbrains.com/pycharm/download/#section=windows 

 

Test conda: It works well if it looks like the following picture, otherwise you need to 

add the path of “conda.bat” into the system environment variable (see the second 

picture). 

 

 

 

https://www.anaconda.com/distribution/#windows
https://www.jetbrains.com/pycharm/download/#section=windows


 

 

Step 1: Create an environment named “lab” and activate it (in Pycharm Terminal) 

> conda create –name lab 

> activate lab 

(base) E:\ Lab_4_ChongQing >activate lab 

(lab) E:\ Lab_4_ChongQing > 

 

Step 2: Install python libraries required for lab (in Pycharm Terminal) 

> conda install pip==19.1.1 

> conda install gdal 

> conda install cytoolz 

> pip install –r (Path to the file) requirements_tbx.txt 

 

 

------------------- Validation --------------------------- 

> python 

(lab) E:\Lab_4_ChongQing>python 

Python 3.7.5 (default, Oct 31 2019, 15:18:51) [MSC v.1916 64 bit (AMD64)] :: Anaconda, Inc. on win32 

Type "help", "copyright", "credits" or "license" for more information. 



 

 

 

>>> import tensorflow as tf 

>>> tf.__version__ 

'2.0.0' 

 

 

>>> import tensorboardX 

>>> tensorboardX.__version__ 

'1.9' 



 

 

If there is any problem, please contact me: puzhao@kth.se 

 

mailto:puzhao@kth.se

