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Preface  
Achieving Food Security in the future while using water resources in a sustainable manner will be a 

major challenge for current and future generations. Increasing population, economic growth and 

climate change all add to increasing pressure on available resources. Agriculture is a key water user 

and careful monitoring of water productivity in agriculture and exploring opportunities to increase it 

is required. Improving water productivity often represents the most important avenue to cope with 

increased water demand in agriculture. Systematic monitoring of water productivity through the use 

of Remote Sensing techniques can help to identify water productivity gaps and evaluate appropriate 

solutions to close these gaps.  

The FAO portal to monitor Water Productivity through Open access of remotely sensed derived data 

(WaPOR) provides access to 10 years of continued observations over Africa and the Near East. The 

portal provides open access to various spatial data layers related to land and water use for agricultural 

production and allows for direct data queries, time series analyses, area statistics and data download 

of key variables to estimate water and land productivity gaps in irrigated and rain fed agriculture.  

The beta release of WaPOR was launched on 20 April 2017 covering the whole of Africa and the Near 

East region with a spatial resolution of 250 m and, eventually complemented with data at 100 m 

resolution for selected countries and river basins. WaPOR Version 1 became available starting from 

June 2018. This document describes the methodology used to produce the data at 30 m resolution 

(Level 3) distributed through WaPOR portal. 
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1 Introduction 
This report outlines the methodology applied to produce the different data components of WaPOR, 

the FAO portal to monitor Water Productivity through Open access of Remotely sensed derived data. 

This data is mainly derived from freely available remote sensing satellite data. The aim of this 

document is to provide the theory that underlies the methods used to produce the different data 

components. References are included throughout the document so that additional information on 

specific aspects of the methodology can be found. Detailed information on the processing chain, data 

sources and processing steps are provided in the Data Manual. 

The beta release of WaPOR, was launched on April 20, 2017. Based on the methodology review 

process, a new version WaPOR 1.0 became available in June 2018, focusing first on the coarser 

resolution level (Level 1), covering the whole of Africa and the Near East at 250 m ground resolution 

and then on the national / river basin level (Level 2) at 100 m resolution. This document describes the 

methodology applied to produce the database at Level 3 (30 m), as made available through WaPOR 

Version 1.0 release (https://wapor.apps.fao.org), starting in August 2018. 

1.1. Characteristics of the datasets 
Each dataset (also called ‘level’) is defined by a unique region of interest and a specific spatial 

resolution. Table 1 specifies the resolution and area covered by the different levels.  

Table 1: Spatial resolution and Regions of Interest of the different datasets (levels). 

Dataset Resolution Region of Interest 

Level 1 ~250m 
(0.00223°) 

Africa and Near East (bounding box 30W, 40N, 65E, 40S) 

Level 2 ~100m 
(0.000992°) 

Countries1:  

Morocco, Tunisia, Egypt, Ghana, Kenya, South Sudan, Mali, Benin, Ethiopia, 
Rwanda, Burundi, Mozambique, Uganda, West Bank and Gaza Strip, Yemen, 
Jordan, Syrian Arab Republic and Lebanon. 
 
River basins2:  
Niger, Nile, Awash and Jordan and Litani. 

Level 3 ~30m 
(0.000268°) 

Irrigation schemes and rainfed areas in Egypt, Ethiopia (2 areas), Mali and 
Lebanon. 

1 The boundaries of the countries are derived from the latest version (2014/2015) of the Global Administrative 
Unit Layers (GAUL), http://www.fao.org/geonetwork/srv/en/metadata.show?id=12691  and they include also 
the Non-Self Governing Territory Western Sahara and the Sovereignty unsettled territories: Hala'ib Triangle 
and Ma'tan al-Sarra.   
2 The boundaries of the river basins are derived from hydroSHEDS 
(http://www.fao.org/geonetwork/srv/en/metadata.show?id=37038). 

 

The pixel resolutions (in m) shown in Table 1 are approximate values. The data is delivered in a 

geographic coordinate system that measures coordinates in latitude and longitude. The pixel size, 

when expressed in meters, will therefore vary with latitude2. The resolution remains the same when 

expressed in degrees, regardless of latitude.  

                                                           
2 When resolution is expressed in meters, higher latitudes (further from the equator) have a higher resolution in an east-west direction. It 

should therefore be noted that, as a result, the raster values should be converted into areal quantities by first calculating the exact size of 
a specific pixel (in meters) before calculating the area it covers. The table below shows how the pixel size (expressed in m) varies with 
increasing latitude.    

Dataset Degrees Equator Lat/Lon (m) Lat/Lon (m) at 20⁰ N/S Lat/Lon (m) at 40⁰ N/S 

http://www.fao.org/geonetwork/srv/en/metadata.show?id=12691
http://www.fao.org/geonetwork/srv/en/metadata.show?id=37038
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The data components that are produced for the WaPOR database are listed in Table 2. Water 

Productivity, Evaporation, Transpiration, Interception, Net Primary Productivity, Above ground 

biomass production and Land Cover Classifications are produced at all three levels. Phenology is 

delivered for Levels 2 and 3 and HI for Level 3 only.  Reference Evapotranspiration and Precipitation 

are only produced at Level 1 and it should be noted that these two data components have a much 

lower spatial resolution than the other Level 1 data components and that they are both produced 

daily. Details of the methodology can be found in Chapter 2 of the Level 1 Data Methodology 

document.  

Additional complementary data layers are listed in Table 3. These include layers that can be applied 

by the user to add value to the WaPOR data components, or to inform the user about the quality of 

input data. Details with regard to Level 3 layers are given in Chapter 2.  

Table 2: Overview of the WaPOR data components, per Level, with temporal and spatial resolutions specified.   

Data components Level1 1 
(~250m) 

Level 2 
(~100m) 

Level 3 
(~30m) 

Remarks 

Water Productivity (WP)  Annual2 Dekadal3/ 
Seasonal4 

Dekadal/ 
Seasonal 

Level specific calculations 

Evaporation (E) Dekadal/Annual Dekadal/ 
Annual 

Dekadal/ 
Annual 

 

Transpiration (T) Dekadal/Annual Dekadal/ 
Annual 

Dekadal/ 
Annual 

 

Interception (I) Dekadal/Annual Dekadal/ 
Annual 

Dekadal/ 
Annual 

 

Net Primary Production (NPP) Dekadal Dekadal Dekadal  
Above ground biomass 
production (AGBP) 

Annual Seasonal Seasonal  

Phenology   Seasonal Seasonal  
Harvest Index (HI)   Seasonal  
Reference Evapotranspiration 
(RET)  

Daily   Different resolution: 20km 

Precipitation Daily   Different resolution: 5km 
Land cover  classification Annual Annual  Dekadal Level specific classes 
 

1 Level 1: Continental, Level 2: Country/River basin, Level 3: Irrigation scheme/sub-basin. 
2 Annual as standard product, with possibility of calculating on user-defined intervals. 
3 Dekadal refers to a period of approximately 10 days. It splits the month in 3 parts, where the first and 
second dekads consist of 10 days each and the duration of the last dekad ranges between 8 and 11 days. 
4 Seasonal refers to the growing season. The length and number may vary, with a maximum of 2 growing 
seasons per year. 

 

Table 3: Overview of additional data layers, specifying the levels, temporal and spatial resolutions and what these 
additional data layers can be used for.   

Complementary data layers Level 1 
(~250m) 

Level 2 (~100m) Level 3 
(~30m) 

Use 

                                                           
Level 1 0.00223 246.6/248.2 246.9/233.4 247.6/190.4 

Level 2 0.000992 109.7/110.4 109.8/103.8 110.1/84.7 

Level 3 0.000268 29.6/29.8 29.7/28.0 29.8/22.9 
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LUE correction factor Annual Annual Seasonal Adjust NPP and AGBP using 
updated LUE at the end of 
the season. 

     
Above-ground Over Total (AOT) 
biomass production ratio 
correction factor 

  Seasonal Adjust AGBP using updated 
AOT ratios at the end of the 
season. 

NDVI quality layer Dekadal Dekadal Dekadal Indicates quality of external 
data used to produce NDVI. 

Land Surface Temperature (LST) 
quality layer 

Dekadal Dekadal  Indicates the quality of the 
Land Surface Temperature 
(LST) input data 

Land Cover Classification Quality Annual Annual Seasonal Indicates the quality of the 
ML classifier and whether a 
pixel was relabelled during 
post-processing 

 

1.2. Structure of the database methodology document(s) 
This document describes the characteristics and the methodology applied to produce the data 

published on WaPOR (version 1.0). It refers to the irrigation scheme / watershed level (Level 3) 

datasets, as shown in Figure 1 and detailed in Box 1 and Table 1, which are published on WaPOR as of 

August 2018. 

Although similar across all levels, the methodology is split in level-specific documents for easier 

reference. The assumption is that users will more likely access data at the specific level that best suit 

their needs, rather than switching between different levels. The level-specific documentation will thus 

provide a practical instrument to understand the data of interest, without the need to look through 

the documentation of the whole database.   
 

 

Figure 1: 2019 WaPOR data coverage at the irrigation scheme level (Level 3). 
Location of Level 3 areas marked with red cycles  

Source: FAO WaPOR, http://www.fao.org/in-action/remote-sensing-for-water-productivity/wapor. 



WaPOR Database methodology: Level 3 data 
 

4 
 

Chapter 1 contains information on the characteristics of the datasets. As illustrated in Box 1 the data 

structure is made up of three different datasets (also called ‘levels’), each comprising a number of 

data components. The ‘level’ of the dataset determines the characteristics (such as spatial resolution 

and region of interest) of the data components.  

Chapter 2 sets out the methodology for the production of the different data components. The 

underlying body of scientific knowledge is summarised, citing references where the reader can find 

more detailed information if needed.  The methodology description is split in two parts: Part 1 

describes the methodology applied for the data components that are made accessible through 

WaPOR. Part 2 of Chapter 2 describes the methodology applied for the production of intermediate 

data components that are not distributed through WaPOR3. Intermediate data components convert 

external data sources into common inputs for the production of the data components, for example 

the NDVI, which is used as input to produce the Evaporation, Transpiration, Interception, Land Cover 

Classification and Phenology data components. Details of the specific data sources of satellite, static 

and meteorological data are addressed in the Data Manual, while a summary table with sensors used 

in production of Level 3 until August 2018 is provided in Annex 1.  

It should be noted that the (intermediate) data components are produced in two distinct processing 

phases, i.e. historical data processing which produces data from 2009 up to December 31 2017, 

followed by a phase of continuous near real time (NRT) processing, starting in 2018 where the 

historical processing left off, continuing up to 2019. In some cases, the different processing phases 

necessitate differences in processing approaches. These are also addressed in the Data Manual.  

Box 1: Data Structure 

 
The term data is frequently used throughout this document. The following definitions explain the 
different uses of the term within WaPOR : 
 
The following definitions are used in relation to the Water Productivity database: 
- Data (file):  raster data in GeoTIFF format, containing coordinate reference system (CRS) 

information in line with the OGC and ISO TC211 specifications. 
- Data component: A time series of similarly structured data files containing one specific type 

of information (e.g. Evaporation). Each individual data file contains information on the data 
component for a different time period.  

- Dataset: A set of related data components which cover the same Region of Interest (ROI) and 
time period (though not necessarily with the same temporal and spatial resolution). For 
example, the continental dataset (Level 1) contains, amongst others, Evaporation, 
Transpiration and Net Primary Productivity data components. 
 

 

                                                           
3 A few data components that are also intermediate data components are distributed through WaPOR, these 
will be noted in the text. 
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The term data is also used in relation to external sources, e.g. data used as input to produce or to 
validate the different data components. The following data sources can be distinguished: 
- Regularly updated data includes satellite imagery and meteorological data, used for the 

production of all data components. 
- Static data, such as elevation and soil type, that do not change within the time period of the 

datasets. 
- Reference data refers to ground or field observations or measurements which are used in 

most cases to validate the data components. Reference data is also used for the production 
of the land cover data component. 

 

1.3. Related documents 
This document focuses on the core theory that underlies the methodology applied for the production 

of the data components at Level 3. Related, more detailed, information can be found in the following 

accompanying documents: 

 Other Level-specific methodology documents related to Level 1 and Level 2. 

 The Data Manual that accompanies WaPOR 1.0 contains a detailed discussion of the processing 

chain of each dataset, i.e. at Level 1, 2 and 3. The Data Manual includes details on external data 

sources used, as satellite sensors, meteorological data and static data sources at various 

resolutions. Differences in the processing chain due to different input data sources, resolutions 

and processing phase (historic or NRT) are explained.     

 Reports on Validation results are delivered at different stages. Quality assessment is an important 

part of WaPOR, therefore independent internal quality control procedures have been set up to 

validate the data components. The methodology for validation and quality control is detailed in 

these reports
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2 Methodology for the production of the data components  
As shown in Table 2 and 3, WaPOR database consists of several data components related to water 

productivity, biomass production, evapotranspiration and land cover, as well as several 

complementary data layers, containing additional information. Part 1 of this chapter sets out the 

method by which these data components and complementary data layers are produced.  

Part 2 of this Chapter describes the methodology of eleven intermediate data components. The 

intermediate data components are used to standardise the processing chain, converting external data 

sources into the standardised input data required for the data components. The processing structure 

based on the production of intermediate data components, was designed because it has the following 

advantages: 

1. Flexibility and adaptability are ensured. NDVI and weather data, for example, can be obtained 

from many different sources. External data sources can be changed easily by defining 

standardised inputs in the form of the intermediate data components. 

2. Different approaches to the pre-processing of external data sources can easily be 

incorporated without changing the overall processing structure of the data components. 

3. Consistency between data components is higher with the use of common standardised inputs. 

This is important as many data components are closely related to each other, e.g. biomass 

production and Evaporation, Transpiration, Interception.  

4. All input data is converted to the required resolution prior to the processing of the data 

components. 

5. Improved processing efficiency is ensured, as the intermediate data components are 

produced only once and are used as input in various data components.  

6. Quality checks can be done on the intermediate data components. In fact, two data layers 

are delivered that contain information on the quality of the remote sensing observations 

used to produce the intermediate data components NDVI and Land Surface Temperature.. 

The following two remarks about resolution should be noted:  

1. The method to produce the data components is independent of spatial resolution. Each pixel is 

considered a closed system in relation to adjacent pixels. Although in reality exchange of energy 

and matter takes place between adjacent pixels, these exchanges are considered negligible when 

considering the spatial and temporal resolution of the datasets. Therefore, all variables referred 

to in the methodology description can be interpreted as a point representing the average for the 

area covered by the pixel, whether at 250m, 100m or 30m resolution.  

2. The temporal resolution of the data components can vary, i.e. daily, dekadal, seasonal and annual. 

When data components with a different temporal resolution are combined, the component with 

the highest temporal resolution will determine the output temporal resolution. For example, 

when dekadal NDVI is combined with daily weather data, processing takes place on a daily basis 

followed by an aggregation to dekadal values again. This ensures that information is retained at 

the highest level of detail for as long as possible during processing.  

In general, the same methodology is applied across different levels to produce a data component. For 

example, Evaporation, Transpiration, Interception and Net Primary Production are produced at all 

three levels (see Table 2 for an overview of data components in the different levels) applying the same 

methodology. Some specific exceptions exist: 
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 Land cover classifications are specific for each level due to differences in the input data sources 

used and the level of land cover detail required.  

 Water Productivity reflects the level of detail of the numerator of the equation. At Level 1 and 2, 

the numerator is above ground biomass production (AGBP), as no information on crop is available 

for those data components. At Level 3, WP can calculated when applicable using yield as 

numerator, as crop-specific information is available for higher resolution data. 

 Phenology is only produced at Level 2 and 3, for which some degree of seasonality and crop-

specific land cover information is available, Harvest Index is only available at Level 3 as it relies on 

detailed crop information. 

Figure 2 shows the relationship between the data components. This flow chart can be used as a 

reading guide. Each component is discussed in a separate section of this chapter. By following the 

arrows in the opposite direction all relevant information for the production of a specific data 

component can be obtained. For example, understanding the full processing chain of the Phenology 

data component also requires studying the NDVI intermediate data component. For the Evaporation 

and Transpiration, seven other data components, of which five are intermediate data components, 

should be studied to understand all aspects of the production process. External data sources are not 

listed in this flow chart, nor are they discussed in this document. Details on the external data sources 

used can be found in the Data Manual. 

The sections for each of the data components follow the same structure. A description of the data 

component includes information on the typical value range and a figure showing an example of the 

data component. The theory that underlies the methodology of the data component is then described. 

This starts with a box denoting the relationship between the data component under study and the 

other components. At the end of every methodology description, a table summarises the 

characteristics of the specific data components. Where relevant, a short discussion on challenges and 

limitations related to the data component is included. 
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Figure 2: Data component flow chart.  

Note: The grey boxes represent intermediate data components that convert external data into 

standardised input. Green outlines represent data components that are derived solely from other 

data components. Boxes with orange outlines represent data components that require external data 

sources that are not shown in the flow chart. Blue boxes represent data variables that are 

distributed through WaPOR. 

 

2.1. WaPOR data components 

This section describes the methodology applied to derive the data components as published through 

WaPOR (WaPOR v 1.0) at https://wapor.apps.fao.org. 

2.1.1. Water Productivity 

2.1.1.1. Gross Biomass Water Productivity 

Description 

The gross biomass water productivity expresses the quantity of output (above ground biomass 

production) in relation to the total volume of water consumed in a given period (FAO, 2016). By 

relating biomass production to total evapotranspiration (sum of soil evaporation, canopy 

transpiration, and interception, section 2.1.5.), this indicator provides insights on the impact of 

vegetation development on consumptive water use and thus on water balance in a given domain. 

 

  

Figure 3: Example of seasonal gross biomass water productivity in the Bekaa (Lebanon), Season 1 of 2015. 
Source: FAO WaPOR, http://www.fao.org/in-action/remote-sensing-for-water-productivity/wapor 

 

https://wapor.apps.fao.org/
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Gross biomass water productivity is calculated and made available through WaPOR on seasonal basis 

at Level 3. However, as the input data are also available on dekadal basis, user-defined temporal 

aggregations are possible4. 

Methodology 

Box 2: Gross biomass water productivity in relation to other data components. 
 

 
 

 
 Calculating GBWP requires input from above ground biomass production, evaporation, 

transpiration and interception and phenology if calculated on seasonal time step. 
 No external data source is required to calculate GBWP.  
 The output is not used in any other data component. 

 

The calculation of gross biomass water productivity is as follows: 

𝐺𝐵𝑊𝑃 =
𝐴𝐺𝐵𝑃

𝐸 + 𝑇 + 𝐼
                  (1) 

Where AGBP is above ground biomass production in kgDM/ha. E is evaporation, T is transpiration and 

I is interception, all in mm. The following data is used for calculating GBWP: AGBP, E, T, I and phenology 

if calculated on seasonal time step. 

 

2.1.1.2. Net Biomass Water Productivity 

Description 

The net biomass water productivity expresses the quantity of output (above ground biomass 

production) in relation to the volume of water beneficially consumed (by canopy transpiration) in the 

year, and thus net of soil evaporation.  

Contrary to gross water productivity, net water productivity is particularly useful in monitoring how 

effectively vegetation (and, more importantly, crops) uses water to develop biomass (and thus yield). 

Net biomass water productivity is calculated and made available through WaPOR on seasonal basis at 

Level 3. However, as the input data are also available on dekadal basis, user-defined temporal 

aggregations are possible4. 

Methodology 

Box 3: Net biomass water productivity in relation to other data components. 
 

 
 
 

                                                           
4 The functionalities for computing GBWP and NBWP over user-defined areas and time are not yet available in 
WaPOR as of September 2017. 
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 Calculating NBWP requires input from above ground biomass production, transpiration 

and phenology if calculated on seasonal time-step. 
 No external data source is required to calculate NBWP.  
 The output is not used in any other data component. 

 

The calculation of net biomass water productivity is as follows: 

𝑁𝐵𝑊𝑃 =
𝐴𝐺𝐵𝑃

𝑇
                 (2)   

Where AGBP is above ground biomass production in kgDM/ha and T is transpiration in mm. The 

following data is used for calculating NBWP: AGBP, T and phenology if calculated on seasonal time-

step. 

Table 4: Overview of Biomass Water productivity data components 

Data 
component 

Unit Range Use Temporal 
resolution 

GBWP  kg/m³ 0 to 65 Measures quantity of dry biomass 
output in relation to consumptive 
water use 

Seasonal (further 
aggregated to 
user-defined) 

NBWP  kg/m³ 0 to 65 Measures quantity of dry biomass 
output in relation to transpiration 
(or beneficial water consumption) 

Seasonal (further 
aggregated to 
user-defined) 

 

2.1.2. Crop Water Productivity 

2.1.2.1. Gross Crop Water Productivity 

Description 

The gross crop water productivity expresses the quantity of the crop yield in relation to the total 

volume of water consumed in a given period (FAO, 2016). By relating the yield to total 

evapotranspiration (sum of soil evaporation, canopy transpiration and interception), this indicator 

provides insights on the impact of the crop development on consumptive water use and thus on water 

balance in a given domain.  

Gross crop water productivity can be calculated through WaPOR on a seasonal basis at Level 3 

depending on availability of crop specific information. However, as the input data are also available 

on dekadal basis, user-defined temporal aggregations are possible6. 

Methodology 

Box 4: Gross crop water productivity in relation to other data components. 

                                                           
5 Range observed in WaPOR area, but theoretical range could go up to 25. 
6 The functionalities for computing GCWP and NCWP over user-defined areas and time are/will be available in 
WaPOR by the end of year 2017. 
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 Calculating GCWP requires input from phenology, above ground biomass production, 

harvest index as well as  actual evaporation, interception and transpiration. 
 Additional crop parameters might be necessary to adjust for standard values used in 

WaPOR for root-shoot ratio (0.65) and light use efficiency 
 The output is not used in any other data component. 

 

 

The calculation of gross crop water productivity is as follows: 

𝐺𝐶𝑊𝑃7 =
𝐴𝐺𝐵𝑃 ∗ 𝐻𝐼

𝐸 + 𝑇 + 𝐼
                  (3) 

Where AGBP is seasonal above ground biomass production in kgDM/ha, HI is described in section 2.1.3  

and it represents the harvestable part of the crop and E is evaporation, T is transpiration and I is 

interception, all in mm. The following data is used for calculating GCWP: phenology, seasonal AGBP, 

seasonal HI and seasonal E, T and I. 

 

2.1.2.2. Net Crop Water Productivity 

Description 

The net crop water productivity expresses the quantity of the major crop yields in relation to the 

volume of water beneficially consumed (by canopy transpiration) in the season, and thus net of soil 

evaporation. Contrary to gross crop water productivity, net crop water productivity is particularly 

useful in monitoring how effectively crops use water to develop yield. 

Net crop water productivity can be calculated and through WaPOR on a seasonal basis at Level 3. 

However, as the input data are also available on dekadal basis, user-defined temporal aggregations 

are possible6. 

Methodology 

Box 5: Net crop water productivity in relation to other data components. 
 

 
 

                                                           
7 it should be noted that additional external data on moisture content in harvested product is necessary to 
derive crop yield from this formula. 
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 Calculating NCWP requires input from phenology, above ground biomass production, 

Harvest Index and Transpiration. 
 Additional crop parameters might be necessary to adjust for standard values used in 

WaPOR for root-shoot ratio (0.65) and light use efficiency 
 The output is not used in any other data component. 

 

The calculation of net crop water productivity is as follows: 

𝑁𝐶𝑊𝑃8 =
𝐴𝐺𝐵𝑃 ∗ 𝐻𝐼

𝑇
                  (4) 

Where AGBP is seasonal above ground biomass production in kgDM/ha, HI is described in section 2.1.3 

and it represents the harvestable part of the crop yield and T is seasonal Transpiration in mm. The 

following data is used for calculating NCWP: Seasonal AGBP, Seasonal HI and seasonal T. 

 

Table 5 Overview of Net Water productivity data component 

Data 
component 

Unit Range Use Temporal 
resolution 

NCWP  kg/m³ 0 to 69 Measures quantity of crop yield 
output in relation to transpiration 
(or beneficial water consumption) 

Seasonal (or 
aggregated to 
user-defined) 

GCWP  kg/m³ 0 to 69 Measures quantity of crop yield 
output in relation to consumptive 
water use 

Seasonal (or 
aggregated to 
user-defined) 

 

2.1.3. Harvest Index 

Description 

The harvest index is used to separate biomass production into harvestable and a non-harvestable 

fraction. The harvest index makes it possible to calculate crop yield and crop water productivity.  

In general, the harvest index is used to assess the productivity of a specific plant variety, indicating 

how much of the biomass production contributes to the harvestable fraction of a crop (yield). It is 

expressed as the ratio of weight of dry grains over the total dry matter10. Yield formation of a crop is 

a complex process, involving internal (plant characteristics) and external factors such as weather 

conditions, soil moisture content and management practices.  Timing is particularly important since 

                                                           
8 It should be noted that additional external data on moisture content in harvested product is necessary to 
derive crop yield from this formula. 
9 Range observed in WaPOR area, but theoretical range could go up to 25. 
10 Definition of harvest index in AQUASTAT (http://www.fao.org/nr/water/aquastat/main/index.stm) 

http://www.fao.org/nr/water/aquastat/main/index.stm


Chapter 2: Methodology for the production of the data components 

13 
 

biomass production and yield formation are affected by external factors in different ways during 

different growth stages of the crop. 

The harvest index is delivered seasonally, so it represents the harvest index at the end of the growing 

season. The index ranges from 0 (no harvestable fraction) to a theoretical maximum of 1 when all 

AGBP is harvested.  For Level 3, the harvest index is delivered for the main crops: wheat, maize, 

potatoes, fruit trees, olives, grapes, rice and sugarcane.  

The harvest index can only be properly interpreted with land cover information as well as crop 

phenology information. The former relates the harvest index to the specific crop and the latter to a 

specific growing season. Typical reference harvest index values for the Level 3 crops are for instance: 

rice (0.43), wheat (0.48), maize (0.48), sugarcane (0.35) (FAO’s AquaCrop model, 2017).  These values 

change during the course of the growing season. At first the harvest index will be low, because most 

of the biomass production contributes to the growth of the crop canopy (vegetative stage).  The 

harvest index increases during the growing season while the crop produces the harvestable material 

(yield formation). In general, only the final value of the harvest index is relevant as this is related to 

the amount of material that can be harvested. 

 

 

 

 

 

Methodology 

Box 6: Harvest Index in relation to other data components. 
 

 

 
 
 Calculation of the Harvest Index requires input from dekadal soil moisture content and 

seasonal phenology.  
 Seasonal crop classification information from the Land Cover data component is needed 

to identify the specific crops.  
 No external data source is required.  
 The output is the seasonal harvest index and it is used to calculate the Yield and the 

Gross/Net Crop Water Productivity.  
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When direct field measurements of crop yield are not available, estimates of the harvest index can be 

obtained through modelling or methods based on remote sensing. Whereas remote sensing can be 

used to derive water use and biomass production relatively accurately, the allocation of biomass 

within the crop cannot be directly monitored. This requires the use of basic crop specific assumptions 

about growth stages and stress response. Given the complex interplay between the external and 

internal factors, this is challenging. Accounting for those external influences on the harvest index can 

be done in different ways. In this project, the methodology adjusts the harvest index for the effect of 

soil moisture stress.  

Central to the methodology for estimating the harvest index is the adjustment of a reference harvest 

index 𝐻𝐼0, based on soil moisture stress experienced by the crop throughout the growing season. Soil 

moisture stress during flowering and yield formation are considered important. Flowering is difficult 

to pinpoint as it spans a relatively short period, therefore this methodology only adjusts the 𝐻𝐼0 on 

the basis of water stress during yield formation, i.e. from MOS to EOS.  

This requires dekadal soil moisture content, which is available on a dekadal basis. This approach is a 

simplification of the method used by FAO’s AquaCrop model, which combines the effects of multiple 

stress factors to adjust a reference harvest index. It is explained in detail in FAO’s Irrigation and 

Drainage Paper 66 (Steduto et al., 2012).  

In order to adjust the reference Harvest Index 𝐻𝐼0 based only on soil moisture content, the following 

equations are relevant:  

𝐷𝑟 = 𝑊𝑟,𝑓𝑐 −𝑊𝑟       (5) 

𝑇𝐴𝑊 = 𝑊𝑟,𝑓𝑐 −𝑊𝑟,𝑤𝑝      (6) 

𝑝 =  
𝐷𝑟
𝑇𝐴𝑊

=  1 − 𝑠𝑒         (7) 

Where: 

𝐷𝑟= Soil water depletion [mm] 

𝑊𝑟,𝑓𝑐 = Root zone soil moisture content at field capacity [mm] 

𝑊𝑟,𝑤𝑝 = Root zone soil moisture content at wilting point [mm] 

𝑊𝑟  = Root zone soil moisture content [mm] 

TAW  = Total available soil water [mm]  

𝑝 = Fractional depletion of TAW 

The fractional depletion is used to provide thresholds at which stress will occur (see also Figure 4). The 

only stress factor taken into account is the stress due to stomata closure (i.e. when 𝑝 is large). For 

example, for wheat, the upper threshold 𝑝𝑢𝑝𝑝𝑒𝑟is 0.65 and the lower threshold 𝑝𝑙𝑜𝑤𝑒𝑟 is 1 (permanent 

wilting point). In Figure 4, this is indicated by the relative stress:  

𝑆𝑟𝑒𝑙 =
𝑝𝑢𝑝𝑝𝑒𝑟−𝑝

𝑝𝑢𝑝𝑝𝑒𝑟−𝑝𝑙𝑜𝑤𝑒𝑟
        (8) 

The valid range for this relative stress is between 0 and 1. The stress coefficient 𝐾𝑠 is then calculated 

as:  

𝐾𝑠 = 1 −
𝑒
𝑆𝑟𝑒𝑙𝑓𝑠ℎ𝑎𝑝𝑒−1

𝑒
𝑓𝑠ℎ𝑎𝑝𝑒−1

        (9) 
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Figure 4: Stress coefficient (Ks) in relation to various degrees of stress (from Steduto et al., 2012) 

The 𝑓𝑠ℎ𝑎𝑝𝑒 factor determines the shape of the curve. This stress coefficient is calculated daily and used 

to limit the harvest index by factor 𝑓𝑝𝑜𝑠𝑡↓: 

𝑓𝑝𝑜𝑠𝑡↓ =
∑ 𝐾𝑠(1−

1−𝐾𝑠
𝑏
)

𝑛(𝑦𝑖𝑒𝑙𝑑)
1=1

𝑛(𝑦𝑖𝑒𝑙𝑑)
       (10) 

Where 𝑏 is a crop-specific parameter (for wheat b =7) indicating the crop response to moisture stress.  

The parameter 𝑛(𝑦𝑖𝑒𝑙𝑑) indicates the number of days for the yield formation, which is derived from 

phenology data (for wheat 𝑛(𝑦𝑖𝑒𝑙𝑑)  is approximately 67 days). 

The 𝑓𝑠ℎ𝑎𝑝𝑒 factor for maize, rice and wheat for instance is respectively 6, 3 and 2.5 for the stress 

related to stomatal closure. These values were obtained from the AquaCrop Reference Manual. 

Finally the harvest index can be determined by adjusting the reference harvest index 𝐻𝐼0: 

𝐻𝐼𝑎𝑑𝑗 = 𝑓𝑝𝑜𝑠𝑡↓𝐻𝐼0        (11) 

Various parameters are crop specific and can be derived from literature, i.e. b, pupper, plower, fshape,𝐻𝐼0 

(see Table 6). Details are provided in the Data Manual. 

 

Table 6: Reference harvest index values used at Level 3. 

Crop Reference Harvest Index (%)1 

Wheat 
Maize 
Potatoes 
Fruit trees 
Olive 
Grapes 
Hillside area crops 
Rice 
Sugarcane 

0.48 
0.48 
0.75 
0.65 
0.6 
0.5 
0.55 
0.43 
0.35 
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1 Reference Harvest index values taken from the AquaCrop version 6.0 crop files and from Principles of 

agronomy for sustainable agriculture (Villalobos & Fereres, 2016). Note that the value of reference harvest 
index is chosen as the middle high end of HI values reported for the majority of the given crop species or 
class. As a guide, reference HI can be 50% or slightly higher for modern high-yielding cultivars of grain crops, 
but considerably lower for earlier cultivars and land races. Since the 1980s only marginal improvements 
have been made in the HI of the major crops. Because it takes approximately 2.5 times as much assimilate 
to make a gram of oil compared to sugar or starch, HI for oil seed crops are substantially lower than for 
grain crops, between 0.25 and 0.4. HI for root crops, on the other hand, are usually much higher, with the 
range of 0.7 to 0.8 being common for high-yielding cultivars of potato, sweet potato, and sugar beet, 
presumably because strong stems are not required to support the harvestable product (Steduto et al., 
2012). The hillside area crops refer to large area of hillside perennials in Bekaa presumably consisting of a 
mix of vineyards and olive trees. Parameters for the hillside crops class are then calculated as the average of 
the parameters for these two classes. 

 
  

Table 7: Overview of Harvest Index data component 

Data 
component 

Unit Range Use Temporal 
resolution 

HI  - 0 to 1 It is used to calculate crop yield and the 
crop water productivity 

Seasonal 
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2.1.4. Phenology 

Description 

Phenology indicates the cycle or season of a crop and, in this case, is defined by the dekad 

corresponding to the start, maximum and end of the growing season. This information can be derived 

from satellite-based vegetation index time series.  

At Level 3, phenology is available for a maximum of two growing seasons annually. The phenology for 

one growing season is delivered as three raster files of which the pixel values are expressed in dekad 

numbers. The first raster indicates the Start of Season (SOS), the second the Maximum of Season 

(MOS) and the third represents the End of Season (EOS). With a maximum of 2 growing seasons 

annually, a full year is therefore described by 6 raster files.  

Figure 5 shows an example of the Phenology data component (Max of Season 1, 2015) at Level 3. 

  

Figure 5: Example of Phenology data at Level 3, showing the Max of Season 1 (2015). 
Source: FAO WaPOR, http://www.fao.org/in-action/remote-sensing-for-water-productivity/wapor 

Methodology 

Box 7: Crop Calendar in relation to other data components. 

 
 
 

 
 

 Calculating the Phenology only requires input from NDVI time series based on dekadal 
values.  

 No external data source is required.  
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 The output is used to calculate Above Ground Biomass Production and to derive the 
Harvest Index. 

 
To determine the Start, Maximum and End of up to two seasons at Level 3 for a given calendar year 

(January - December) WaPOR applies a methodology that is based on the methods described by Van 

Hoolst et al. (2016)11.This methodology can derive phenological information from a time series of 

dekadal vegetation index composites (NDVI). The input dekadal NDVI time series covers exactly three 

calendar years (3 x 36 = 108 dekads), with the target year in the middle. The output “dates” of the 

Start, Maximum and End of season are expressed in dekads, numbered from the start of the time 

series spanning 3 years (1-36 for the first year, 37-72 for the target year, 73-108 for the next year12). 

The dekadal NDVI time series is first filtered to identify areas of ocean and missing data. The data is 

then smoothed and all local maxima (green cycles) are pruned until only the most significant maxima 

remain, so that only a maximum of two remain based on whether one or two seasons can be identified 

within a target year. Most often, only one season (or maximum) occurs, labelled “Season1” whilst 

“Season2” will be labelled as “out of season”.    

If only one season occurs, SOS1 < MOS1 < EOS1. By definition EOS1 lies in the target year but SOS1 

can be situated in either the target year or the previous year. If two seasons occur, SOS1 < MOS1 < 

EOS1 < SOS2 < MOS2 < EOS2. Since EOS1 and EOS2 are by definition situated in the target year, this 

also holds for the intermediate SOS2 and MOS2.  

Phenology outputs can be prone to some variability due to the inherent structure of the data and 

methodology. The quality of the NDVI time series plays a determining role in the outcome of the 

Phenology data component. Noise in the data can create local maxima/minima which can be mistaken 

for separate growing seasons. Phenology parameters also strongly depend on the definitions of the 

start/end of growing season. This makes comparison with other data sources on start/end of growing 

season difficult.  A growing season is included in a calendar year if the End of season occurs in it. 

Difficulties arise when the End of season occurs close to the start of a calendar year as it will be an 

incorrect representation of when the season took place. To circumvent this, a growing season is 

attributed to a calendar year only if the End of season falls after the first 3 dekads of this calendar 

year. For instance if an EOS is recorded in dekad 2 of 2018, the growing season will be attributed to 

2017 whereas if the EOS is recorded in dekad 4, it will be attributed to 2018.   

In the case of perennials such as orchards, it is likely that a SOS, MOS and EOS will not be identified 

since orchards cannot be directly distinguished in their phenological information. Where a clear 

growing season can be distinguished, such as for apples, this will be represented in the data. However, 

if no growing season can be distinguished as for most perennials, a ‘no season’ label will be applied.  

 

Table 8: Overview of the Phenology data component 

Data component Unit Range Use Temporal resolution 

                                                           
11 The publication describes the methodology as applied to the FAO-ASIS project. This was applied using SPOT-
VEGETATION (1km) data. For WaPOR the methodology is applied to higher resolution input data that provide 
more spatial detail and are less influenced by mixing effects. As a consequence, it is expected that the estimated 
results (SOS, EOS) will be more precise and land cover specific.  
12 For example, if the target year is 2016, dekad 37 represents 1-10 January 2016, dekad 1 represents 1-10 
January 2015, dekad 73 represents 1-10 January 2017. Dekad 30 represents 21-31 October 2015. 
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Phenology dekad 1-751 It is used to calculate AGBP 
and to derive the Harvest 
Index  

Seasonal 

1Where 36+3<EOS<72+3 and SOS1<MOS1<EOS1<SOS2<MOS2<EOS2   
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2.1.5. Evaporation, Transpiration and Interception 

Description 

Evapotranspiration (ET) is the sum of the soil evaporation (E), canopy transpiration (T) and 

interception (I). The interception describes the rainfall intercepted by the leaves of the plants that will 

be directly evaporated from their surface. This concept will be further explained below. The 

Evaporation, Transpiration and Interception are limited by climate (wind speed, radiation and air 

temperature) and soil conditions (soil moisture content).  The sum of all three parameters i.e. the 

Actual EvapoTranspiration and Interception (ETIa) can be used to quantify the agricultural water 

consumption. In combination with biomass production or yield it is possible to derive the agricultural 

water productivity.  

Evaporation, transpiration, interception and ETIa are delivered for Level 3 on a dekadal basis, where 

pixel values represent the average daily E, T, I and ETIa values13 for that specific dekad in mm/day. 

Accumulation on an annual basis can also be found on the WaPOR portal for these four parameters. 

Figure 6 shows an example of the ETIa data component at Level 3.  

 

Figure 6: Example of AETI data component at Level 3 (2018, dekad 19). 
Source: FAO WaPOR, http://www.fao.org/in-action/remote-sensing-for-water-productivity/wapor 

 

Of all data components, E and T require the largest number of inputs to calculate (see Figure 2 and 

the summary in Box 8). Only the external optical satellite data is available at the three resolutions of 

Levels 1 (250 m), 2 (100 m) and 3 (30 m) whilst the other external input data sources all have a 

                                                           
13 Average daily E, T, I and ETIa values can be converted into volume for a specific area, e.g. 1 mm = 1 l/m2 or 1 
mm = 10 m3/ha. 
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(significantly) lower resolution14. The spatial variability of these data sources is therefore more limited, 

thereby affecting the resulting E and T data component.   

The collection of optical satellite data can be hampered by the presence of clouds, reducing the 

information on temporal variability. Although both aspects are accommodated for within the data 

processing chain, its implications should be understood when considering the results: the quality of 

the E, T, and I data component is a combination of the accuracy of the algorithms and the quality of 

the external data. One additional data layer is provided that indicates the quality of the input data for 

NDVI (described in Section 2.2.1). 

Methodology  

The method to calculate E and T is based on the ETLook model described in Bastiaanssen et al. (2012).  

It uses the Penman-Monteith (P-M) equation, adapted to remote sensing input data. The Penman-

Monteith equation (Monteith, 1965) predicts the rate of total evaporation and transpiration using 

commonly measured meteorological data (solar radiation, air temperature, vapour pressure and wind 

speed). It has become the FAO standard for calculating the actual and reference evapotranspiration. 

FAO irrigation and drainage paper 56 (Allen et al., 1998) describes the method in detail15. The reader 

is advised to consult this document for detailed information on the use of the P-M equation and 

guidelines regarding the calculation of evapotranspiration.  

Box 8: Evaporation, transpiration and interception in relation to other data components. 

 
 

 
 

 Calculating E and T requires input from seven data components. Solar radiation, Weather 
data and Precipitation are daily inputs. Soil moisture stress, NDVI and Surface albedo are 
dekadal inputs.  I only requires input from NDVI and Precipitation. 

 Land Cover input is used to derive surface roughness and minimum stomatal resistance.  
 No external data sources are used to calculate E, T and I.  
 E, T and I are used as input to Water Productivity. 
 E, T and I are calculated on a dekadal basis.  

 

This section considers the P-M equation from a remote sensing perspective, i.e. implementation in an 

operational environment. This is done by dissecting the P-M equation to the level of the input data, 

consisting of 7 (final or intermediate) data components (see Box 8). In order to understand the 

processing chain for the E, T and I data components, the reader is advised to consult the relevant 

sections in this chapter for explanations of all the input data components. 

                                                           
14 For example, temperature data has a spatial resolution of 0.25 degrees (~25 km) and atmospheric 
transmissivity has a spatial resolution of 4 km. 
15 FAO irrigation and drainage paper 56 (Allen et al. 1998) can be found on the FAO website: 
www.fao.org/docrep/X0490E/x0490e00.htm. 
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Penman-Monteith equation (ET) 

The Penman-Monteith equation is also known as the combination-equation because it combines two 

fundamental approaches to estimate evaporation (Allen et al., 2005). These are the surface energy 

balance equation and the aerodynamic equation. The Penman-Monteith equation is expressed as: 

𝜆𝐸𝑇 =
𝛥(𝑅𝑛 − 𝐺) + 𝜌𝑎𝑐𝑝

(𝑒𝑠 − 𝑒𝑎)
𝑟𝑎

𝛥 + 𝛾(1 +
𝑟𝑠
𝑟𝑎
)

          (12) 

where:  
𝜆 latent heat of evaporation [J kg-1] 
E evaporation [kg m-2 s-1] 
T transpiration [kg m-2 s-1] 
𝑅𝑛  net radiation [W m-2]  
𝐺   soil heat flux [W m-2] 
𝜌𝑎   air density [kg m-3] 
𝑐𝑝   specific heat of dry air [J kg-1 K-1]  

𝑒𝑎   actual vapour pressure of the air [Pa] 
𝑒𝑠   saturated vapour pressure [Pa] which is a function of the air temperature   
Δ   slope of the saturation vapour pressure vs. temperature curve [Pa K-1]  
𝛾   psychrometric constant [Pa K-1] 
𝑟𝑎   aerodynamic resistance [s m-1]   
𝑟s   bulk surface resistance [s m-1] 
  

The ETLook model solves two versions of the P-M equation: one for the soil evaporation (E) and one 

for the canopy transpiration (T): 

𝜆𝐸 =
𝛥(𝑅𝑛,𝑠𝑜𝑖𝑙 − 𝐺) + 𝜌𝑎𝑐𝑝

(𝑒𝑠 − 𝑒𝑎)
𝑟𝑎,𝑠𝑜𝑖𝑙

𝛥 + 𝛾(1 +
𝑟𝑠,𝑠𝑜𝑖𝑙
𝑟𝑎,𝑠𝑜𝑖𝑙

)
      (13) 

and 

𝜆𝑇 =

𝛥(𝑅𝑛,𝑐𝑎𝑛𝑜𝑝𝑦) + 𝜌𝑎𝑐𝑝
(𝑒𝑠 − 𝑒𝑎)
𝑟𝑎,𝑐𝑎𝑛𝑜𝑝𝑦

𝛥 + 𝛾(1 +
𝑟𝑠,𝑐𝑎𝑛𝑜𝑝𝑦
𝑟𝑎,𝑐𝑎𝑛𝑜𝑝𝑦

)
     (14) 

The two equations differ with respect to the net available radiation (𝑅𝑛,𝑠𝑜𝑖𝑙  and 𝑅𝑛,𝑐𝑎𝑛𝑜𝑝𝑦) as well as 

the aerodynamic and surface resistance ( 𝑟𝑎,𝑠𝑜𝑖𝑙, 𝑟𝑠,𝑠𝑜𝑖𝑙  𝑎𝑛𝑑  𝑟𝑎,𝑐𝑎𝑛𝑜𝑝𝑦, 𝑟𝑠,𝑐𝑎𝑛𝑜𝑝𝑦). Furthermore, the soil 

heat flux (𝐺) is not taken into account for transpiration.  

The Net Radiation and the Aerodynamic and Surface Resistance are discussed in more detail below. 

The other parameters of the equation are not taken into further consideration, as these are constants 

or variables that can be derived directly from mathematical relationships.  

The main concepts of the ETLook model are illustrated in a schematic representation in Figure 7. 
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Figure 7: Schematic diagram illustrating the main concepts of the ETLook model,  

Where two parallel Penman-Monteith equations are solved. For transpiration the coupling with the 

soil is made via the subsoil or root zone soil moisture content whereas for evaporation the coupling 

is made via the soil moisture content of the topsoil. Interception is the process where rainfall is 

intercepted by the leaves and evaporates directly from the leaves using energy that is not available 

for transpiration. 

Net radiation (𝑅𝑛) 

The net radiation 𝑅𝑛  represents the available energy at the earth’s surface, which can be described 

by the radiation balance:  

𝑅𝑛 = (1 − 𝛼0)𝑅𝑠 − 𝐿
∗ − 𝐼     (15) 

where 𝛼0 is the surface albedo [-], 𝑅𝑠 is incoming solar radiation [W m-2], 𝐿∗ is net long wave radiation 

[W m-2], 𝐼 represents energy dissipation due to interception losses [W m-2].   

The net radiation is derived differently for the soil and canopy. Leaf area index 𝐼𝑙𝑎𝑖, a measure of 

canopy density, is used to separate the net radiation into soil net radiation and canopy net radiation. 

An increase in leaf area index results in an exponential decrease in the fraction of the radiation 

available for the soil as more is captured by the canopy. The division is calculated using Beer’s law 

(which describes the attenuation of light through a material), leading to the following descriptions of 

soil and canopy net radiation: 

𝑅𝑛,𝑠𝑜𝑖𝑙 = 𝑅𝑛exp(−𝑎𝐼𝑙𝑎𝑖)    (16) 

𝑅𝑛,𝑐𝑎𝑛𝑜𝑝𝑦 = 𝑅𝑛(1 − exp(−𝑎𝐼𝑙𝑎𝑖))    (17) 

where a is the light extinction factor for net radiation [-]. 



WaPOR Database methodology: Level 3 data 
 

24 
 

The leaf area index (LAI) 𝐼𝑙𝑎𝑖 [m
2m-2] describes the amount of green leaf area per unit of soil area. A 

leaf area index equal to zero indicates that there is no vegetation present, a leaf area index larger than 

zero indicates the presence of green leaves. The NDVI 𝐼𝑛𝑑𝑣𝑖 [-] is used to derive 𝐼𝑙𝑎𝑖.  This is done in 

two steps. First, NDVI is used to calculate vegetation cover 𝑐𝑣𝑒𝑔, which is subsequently converted into 

leaf area index. The two equations below describe this conversion for a specific range of the NDVI 

value. 

 

{
 
 

 
 𝑐𝑣𝑒𝑔 = 0 𝐼𝑛𝑑𝑣𝑖 ≤ 0.125

𝑐𝑣𝑒𝑔 = 1 − (
0.8 − 𝐼𝑛𝑑𝑣𝑖
0.8 − 0.125

)
0.7

0.125 < 𝐼𝑛𝑑𝑣𝑖 < 0.8

𝑐𝑣𝑒𝑔 = 1 𝐼𝑛𝑑𝑣𝑖 ≥ 0.8

     (18) 

The second step is the conversion from vegetation cover to leaf area index 𝐼𝑙𝑎𝑖 according to the 

following relationships: 

 

{
 
 

 
 

𝐼𝑙𝑎𝑖 = 0 𝐼𝑛𝑑𝑣𝑖 ≤ 0.125

𝐼𝑙𝑎𝑖 = 
ln (−(𝑐𝑣𝑒𝑔 − 1))

−0.45
0.125 < 𝐼𝑛𝑑𝑣𝑖 ≤ 0.795

𝐼𝑙𝑎𝑖 = 7.63 𝐼𝑛𝑑𝑣𝑖 > 0.795

    (19) 

 

This relationship has been derived using a large number of LAI functions compiled from literature (e.g. 

Carlson and Ripley, 1997; Duchemin, et al., 2006). The above relationship represents the average from 

these compiled relationships.  

Interception is the process where rainfall is intercepted by the leaves. This evaporates directly from 

the leaves and requires energy that is not available for transpiration. Interception 𝐼  [mm day-1] is a 

function of the vegetation cover, LAI and precipitation (P), expressed as: 

 

𝐼𝑚𝑚 = 0.2𝐼𝑙𝑎𝑖 (1 −
1

1 +
𝑐𝑣𝑒𝑔𝑃
0.2𝐼𝑙𝑎𝑖

)     (20) 

Interception is relatively high with a small amount of precipitation, with the fraction intercepted 

decreasing quickly as precipitation increases. The maximum interception is determined by the LAI. The 

energy 𝐼 needed to evaporate 𝐼𝑚𝑚 is calculated as follows: 

𝐼 =  𝐼𝑚𝑚
𝜆

86,400
     (21) 

where:  
𝜆 latent heat of evaporation [J kg-1] 
 
The net long wave radiation 𝐿∗, i.e. the difference between the incoming and outgoing long wave 

radiation, is computed using the formulation described in FAO report no 56 (Allen et al., 1998). This is 

a function of the air temperature (𝑇𝑎), actual vapour pressure (𝑒𝑎) and transmissivity (𝜏). 
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As indicated above, the total evapotranspiration is obtained by summing the soil evaporation and 

canopy transpiration calculated from the Penman-Monteith equation and the interception by the 

leaves.  

Soil heat flux (G) 

The soil heat flux 𝐺 is required to calculate evaporation from the soil surface. It is calculated according 

to FAO report no 56 (Allen et al., 1998). For northern latitudes, the maximum value for 𝐺 is recorded 

in May. For southern latitudes this occurs in November. For northern latitudes it is calculated with the 

equation below. −𝜋 4⁄  is replaced by 3𝜋 4⁄  for southern latitudes. 

𝐺 =
√2𝐴𝑡,𝑦𝑒𝑎𝑟𝑘sin(

2𝜋𝐽
𝑝 −

𝜋
4)

𝑧𝑑
exp(−𝑎𝐼𝑙𝑎𝑖)    (22) 

where: 
 𝐴𝑡,𝑦𝑒𝑎𝑟  yearly air temperature amplitude [K] 

𝑘   soil thermal conductivity [W m-1 K-1] 
𝐽  day of year [-] 
𝑝  number of days in year [-] 
𝑧𝑑   damping depth [m] 
𝐼𝑙𝑎𝑖  leaf area index [-] 
a  light extinction factor for net radiation [-] (same as in (16) and (17)) 
 
The damping depth (𝑧𝑑) and the soil thermal conductivity (𝑘) depend on soil characteristics. Usually 
these are taken as constants. The yearly air temperature amplitude is derived from climatic data.  

 

Surface resistances (𝑟𝑠) 

The surface resistances in the Penman-Monteith equations describe the influence (resistance) of the 

soil and the canopy on the flow of vapour in relation to evaporation and transpiration.  

The soil resistance 𝑟𝑠,𝑠𝑜𝑖𝑙 is modelled using the minimal soil resistance 𝑟𝑠𝑜𝑖𝑙,𝑚𝑖𝑛 and relative soil 

moisture content  𝑆𝑒 by means of a constant power function (Camillo and Gurney, 1986; Clapp and 

Hornberger, 1978; Dolman, 1993; Wallace et al., 1986): 

𝑟𝑠,𝑠𝑜𝑖𝑙 = 𝑟𝑠𝑜𝑖𝑙,𝑚𝑖𝑛(𝑆𝑒)
−2.1     (23) 

The canopy resistance is a function of the leaf area index, minimum stomatal resistance 𝒓𝒄𝒂𝒏𝒐𝒑𝒚,𝒎𝒊𝒏 

and a number of reduction factors (Jarvis, 1976; Stewart, 1988).  The Jarvis-Stewart parameterization 

describes the joint response of soil moisture and LAI on transpiration considering meteorological 

conditions (solar radiation, temperature and relative humidity 𝜙): 

𝑟𝑠,𝑐𝑎𝑛𝑜𝑝𝑦 = (
𝑟𝑐𝑎𝑛𝑜𝑝𝑦,𝑚𝑖𝑛

𝐼𝑙𝑎𝑖,𝑒𝑓𝑓
)(

1

𝑆𝑡𝑆𝑣𝑆𝑟𝑆𝑚
)     (24) 

where: 
𝑟𝑐𝑎𝑛𝑜𝑝𝑦,𝑚𝑖𝑛 minimum stomatal resistance [s m-1] 

𝐼𝑙𝑎𝑖,𝑒𝑓𝑓  effective leaf area index [-] 

𝑆𝑡  temperature stress [-], a function of minimum, maximum and optimum 
temperatures as defined by Jarvis (1976)  

𝑆𝑣   vapour pressure stress induced due to persistent vapour pressure deficit [-] 
𝑆𝑟   radiation stress induced by the lack of incoming shortwave radiation [-] 
𝑆𝑚   soil moisture stress originating from a lack of soil moisture in the root zone [-] 
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The minimum stomatal resistance 𝑟𝑐𝑎𝑛𝑜𝑝𝑦,𝑚𝑖𝑛 can have different values for different types of 

vegetation. This is derived from land cover information. The canopy resistance equation is based on a 

single leaf layer, therefore effective leaf area index has to be calculated as follows (Mehrez et al.,  

1992; Allen et al., 2006a): 

𝐼𝑙𝑎𝑖,𝑒𝑓𝑓 =
𝐼𝑙𝑎𝑖

0.3𝐼𝑙𝑎𝑖 + 1.2
     (25) 

Aerodynamic resistance (𝑟𝑎) 

The aerodynamic resistance has to be calculated for both neutral and non-neutral conditions. Neutral 

conditions exist when turbulence is created by shear stress (wind) only. Buoyancy (thermal rise of air) 

causes unstable non-neutral conditions. Under neutral conditions the aerodynamic resistance for soil 

(𝑟𝑎,𝑠𝑜𝑖𝑙) and canopy (𝑟𝑎,𝑐𝑎𝑛𝑜𝑝𝑦) can be computed (Allen et al., 1998; Choudhury et al., 1986; Holtslag, 

1984) with: 

𝑟𝑎,𝑠𝑜𝑖𝑙 =
ln (

𝑧𝑜𝑏𝑠
𝑧0,𝑠𝑜𝑖𝑙

) ln (
𝑧𝑜𝑏𝑠

0.1𝑧0,𝑠𝑜𝑖𝑙
)

𝑘2𝑢𝑜𝑏𝑠
     (26) 

𝑟𝑎,𝑐𝑎𝑛𝑜𝑝𝑦 =

ln(
𝑧𝑜𝑏𝑠 − d
𝑧0,𝑐𝑎𝑛𝑜𝑝𝑦

)ln(
𝑧𝑜𝑏𝑠 − d

0.1𝑧0,𝑐𝑎𝑛𝑜𝑝𝑦
)

𝑘2𝑢𝑜𝑏𝑠
     (27) 

Where:  
𝑘   von Karman constant [-]  
𝑢𝑜𝑏𝑠   wind speed at observation height [m s-1] 
d  displacement height [m] 
𝑧0,𝑠𝑜𝑖𝑙   soil surface roughness [m]  
𝑧0,𝑐𝑎𝑛𝑜𝑝𝑦 canopy surface roughness [m] 

𝑧𝑜𝑏𝑠   observation height [m]  
 
The soil and canopy surface roughness are derived from land cover and NDVI. Land cover classes are 
used to assign the obstacle height from which surface roughness to momentum (z0,m) is derived. To 
account for seasonal variation during the growing season, NDVI is used to scale the obstacle height 
for vegetation.  
Under non-neutral conditions also the turbulence generated by buoyancy should be included. The 

Monin-Obukhov similarity theory (Monin and Obukhov, 1954) is used to describe the effect of 

buoyancy on the turbulence by means of stability corrections: 

𝑟𝑎,𝑠𝑜𝑖𝑙 =
ln (

𝑧𝑜𝑏𝑠 − 𝑑
0.1𝑧0,𝑠𝑜𝑖𝑙

) − 𝜓ℎ,𝑜𝑏𝑠

𝑘𝑢∗
     (28) 

𝑟𝑎,𝑐𝑎𝑛𝑜𝑝𝑦 =
ln(
𝑧𝑜𝑏𝑠 − 𝑑
0.1𝑧0,𝑚

) − 𝜓ℎ,𝑜𝑏𝑠

𝑘𝑢∗
     (29) 

Where 𝜓ℎ,𝑜𝑏𝑠 is the stability correction for heat which is a function of 𝑧𝑜𝑏𝑠, 𝑑 and 𝐿, the Monin-

Obukhov length defined as:  

𝐿 =
−𝜌𝑐𝑝𝑢∗

3𝑇𝑎
𝑘𝑔𝐻

     (30) 

Where:  
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Ta   air temperature [K] 
 u∗   friction velocity [m s-1]  
H   sensible heat flux (see text below)  
 

The Monin-Obukhov length can be thought of as the height in the boundary layer at which the 

contribution of shear stress to turbulence is equal to the contribution of buoyancy to turbulence. 

Both the aerodynamic resistance under non-neutral conditions and the sensible heat flux, the source 

of this non-neutral condition, are unknown variables. They can only be solved through an iterative 

process. A first estimate of the sensible heat flux 𝐻 using the definitions for 𝑟𝑎,𝑠𝑜𝑖𝑙  and 𝑟𝑎,𝑐𝑎𝑛𝑜𝑝𝑦 under 

neutral conditions provides a first estimate for the Monin-Obukhov length. The stability corrections 

𝜓ℎ,𝑜𝑏𝑠 are then introduced in an iterative approach. When the iterations are converging, final values 

of evaporation and transpiration can be calculated. Iterations typically converge after only a small 

number of iterations (usually approximately 3). 

ET conversion to mm 

When the aerodynamic resistances are solved, evaporation and transpiration can be calculated. At 

this stage of the calculations they are still expressed as the available energy for evaporation and 

transpiration [W m-2], hence the notation: 𝜆𝐸𝑇, 𝜆𝐸, 𝜆𝑇 in the P-M equation. These are then converted 

to mm: 

𝐸 =  𝜆𝐸 (
𝑡𝑑𝑎𝑦

𝜆
) = 𝜆𝐸 (

86,4000

2,453,780
) ≈ 0.035𝜆𝐸        (31) 

 

Where 𝑡𝑑𝑎𝑦 is the number of seconds in a day (86,400) and 𝜆 is the latent heat of evaporation which 

is a function of temperature, 𝜆 at 293 K is equal to 2,453,780. 

 

A similar equation can be used for 𝜆𝐸𝑇, 𝜆𝑇. The equation for 𝜆 is as follows: 

 

𝜆 = 𝜆0 + 𝑐 ∗ 𝑇       (32) 

Where 𝑐 = -2,361 J/kg/C and 𝜆0 = 2,501,000 J/kg 

 

 

Table 9: Overview of E, T, I and ETIa  data components 

Data component Unit Range Use Temporal 
resolution 

Evaporation mm
/day 

0-1016 Measures soil evaporation in the period of a 
dekad 

Dekadal 

Transpiration mm
/day 

0-2 Measures canopy transpiration in the period 
of reference  

Dekadal 

Interception mm
/day 

0-2 Measures canopy interception in the period 
of reference 
 

Dekadal 

                                                           
16 Range of values for evaporation on land. On open water, we find values up to 15 mm/day.  
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Actual 
evapotranspiration 
and Interception 
(ETIa)  

mm
/day
% 

0-12 It can be used to quantify the agricultural 
water consumption. In combination with 
biomass production or yield, it is possible to 
derive the agricultural water productivity.  

Dekadal 

 

2.1.6. Net Primary Production 

Description 

Net Primary Production (NPP) is a fundamental characteristic of an ecosystem, expressing the 

conversion of carbon dioxide into biomass driven by photosynthesis. NPP is part of a family of 

definitions describing the carbon fluxes between the ecosystem and the atmosphere. Gross Primary 

Production (GPP) represents the carbon uptake by the standing biomass due to photosynthesis. NPP 

is the GPP minus autotrophic respiration, the losses caused by the conversion of basic products 

(glucose) to higher-level photosynthates (starch, cellulose, fats, proteins) and the respiration needed 

for the maintenance of the standing biomass. NEP or Net Ecosystem Production also accounts for the 

contribution of soil respiration, i.e. the re-conversion to CO2 of leaf and other litter by soil micro-flora. 

Finally, subtracting the losses due to disturbance and anthropogenic removals gives the Net Biome 

Production (NBP). Figure 8 shows a schematic overview of carbon fluxes. 

 

Figure 8: The component fluxes and processes in ecosystem productivity. GPP: Gross Primary Production, NPP: Net 
Primary Production, NEP: Net Ecosystem Production, NBP: Net Biome Production (Valentini, 2003) 

NPP is derived from satellite imagery and meteorological data. The core of the methodology has been 

detailed in Veroustraete et al. (2002), whilst the practical implementation17 is described in Eerens et 

al. (2004). These methodologies were improved within the framework of the Copernicus Global Land 

Component18, the most important change being the incorporation of biome-specific light use 

efficiencies (LUEs).  WaPOR applies this updated methodology. Two additional changes were made, 

which were requested during the methodology review. A reduction factor for soil moisture stress that 

accounts for short-term water deficiency was added. Another addition was the application of light use 

efficiencies specific to the type of  natural vegetation and the type of crops classified within WaPOR. 

Practically this means that a preliminary NPP data component will be produced during the growing 

season, using the default LUE value 2.49 kgDM/GJPA. This value was determined as the optimal LUE 

for cropland in a study conducted by VITO in the frame of the GMES Initial Operations. In this study, 

biome-specific LUE were estimated by calibrating gross dry matter productivity per land cover class 

                                                           
17 The practical implementation was developed for the MARS Crop Yield Forecasting System (Eerens et al., 
2004) 
18 More information, including the validation report can be found at 
http://land.copernicus.eu/global/products/dmp. 
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(based on ESA CCI maps) using flux tower GPP observations (Swinnen et al., 2018).    . At the end of 

the growing season, a raster layer with correction factors containing LUE values specific for each type 

of natural vegetation (e.g. woodland, shrubland and grassland) and crop type (C3 and C4) (see 2.1.8) 

is supplied. The user can correct the preliminary NPP data components by multiplying with the LUE 

correction factor data layer.  

NPP is delivered for all three levels on a dekadal basis, where pixel values represent the average daily 

net primary production for that specific dekad in gC/m2/day. In some cases, such as for agricultural 

purposes, it is more appropriate to measure Dry Matter Production (DMP, in kgDM/ha/day). NPP can 

be converted to DMP using a constant scaling factor of 0.45 gC/gDM (Ajtay et al., 1979). Therefore 1 

gC/m²/day (NPP) = 22.222 kgDM/ha/day (DMP). Typical values for NPP within the region vary between 

0 and 5.4 gC/m²/day (NPP), or 0 to 120 kgDM/ha/day (DMP), although higher values can occur 

(theoretically up to 320 kgDM/ha/day). Figure 9 shows an example of the NPP data component at 

Level 2.  

It should be noted that the effects of several potentially important factors, such as nutrient 

deficiencies, pests and plant diseases are omitted in the calculation of the NPP product. However, it 

might be argued that the adverse effects of diseases and shortages of nutrients are manifested 

(sooner or later) via the remote sensing-derived fAPAR. 

 

 

Figure 9: Example of NPP data component at Level 3 (2018, dekad). 
Source: FAO WaPOR, http://www.fao.org/in-action/remote-sensing-for-water-productivity/wapor 
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Methodology 

Box 9: Net Primary Production in relation to other data components. 

 
 

 
 Calculating Net Primary Production requires daily input from Weather data and Solar 

radiation and dekadal input from fAPAR and Soil moisture stress.  
 Seasonal or annual land cover is an indirect input as light use efficiencies are dependent 

on land cover.  
 A soil moisture stress reduction factor is incorporated to adjust for water stress. 
 No external data source is required to calculate Net Primary Production.  
 NPP is produced on a dekadal basis. 
 Dekadal NPP is used as input to calculate Above Ground Biomass Production. 

 

Calculating NPP requires daily input from Weather data (Tmin/Tmax) and Solar radiation, as well as 

dekadal inputs from fAPAR and Soil moisture stress. Land Cover is an indirect input as Light Use 

Efficiency (LUE) is land cover specific.  

 

The method to compute Net Primary Production is based on Monteith (1972), which describes 

ecosystem productivity in response to solar radiation. The equation is expressed as follows: 

  
𝑁𝑃𝑃 = 𝑆𝑐 𝑅𝑠𝜀𝑝 𝑓𝐴𝑃𝐴𝑅 𝑆𝑀 𝜀𝑙𝑢𝑒 𝜀𝑇 𝜀𝐶𝑂2 𝜀𝐴𝑅 [𝜀𝑅𝐸𝑆]        (34) 

Where: 

Sc  Scaling factor from DMP to NPP [-] 
Rs  Total shortwave incoming radiation [GJT/ha/day] 
εp  Fraction of PAR (0.4 – 0.7µm) in total shortwave 0.48 [JP/JT] 

fAPAR  PAR-fraction absorbed (PA) by green vegetation [JPA/JP] 
𝑆𝑀  Soil moisture stress reduction factor 
εlue  Light use efficiency (DM=Dry Matter) at optimum [kgDM/GJPA] 
εT  Normalized temperature effect [-] 
εCO2  Normalized CO2 fertilization effect [-] 
εAR  Fraction kept after autotrophic respiration [-] 
εRES  Fraction kept after residual effects (including soil moisture stress)[-] 
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The following are obtained from intermediate data components: incoming solar (shortwave) 

radiation19 𝑅𝑠 (see section 0), fAPAR (see section 2.2.4) and soil moisture stress (see section 0).  

The fraction εp of PAR (Photosynthetically Active Radiation, 400-700 nm) within the total shortwave 

(200-4000 nm) varies slightly around the mean of εp=0.48, denoting that 48% of all incoming solar 

radiation is situated in the 400-700nm region. Although small variations occur, this value is kept 

constant.  

Light Use Efficiency (LUE) is a coefficient for the efficiency by which vegetation converts energy into 

biomass. It is a land cover specific variable and is derived from the last known land cover (see section 

2.1.8). Since land cover is only produced at the end of the season, a complementary LUE correction 

factor data layer is produced for Level 2 and Level 3, for which crop information is available, to allow 

the user to adjust for the correct land cover after the end of season (see relevant methodology 

documents).  

The effect of temperature (T), atmospheric CO2 concentration (CO2) and autotrophic respiration20 

(AR) is simulated via rather complex biochemical equations (see Veroustraete et al., 2002). However, 

the influencing factors driving these biochemical processes are temperature (T) and CO2 

concentration. The CO2 concentration is assumed to be constant over the globe, as well as within a 

year. The overall increasing trend in CO2 concentrations, resulting in the greening effect of CO2, is 

included by adjusting the CO2 concentration with a linear function over time. This function was derived 

from the annual 'spatial' average of globally-averaged marine surface (CO2) data from the NOAA-ESRL 

cooperative air sampling network of the last 15 years. 

The factor RES (residual) is added in the above equation to emphasize the fact that some potentially 

important factors, such as the effect of droughts, nutrient deficiencies, pests and plant diseases, 

influence NPP. The factor includes the effect of soil moisture stress. 

Given the simple elaboration of the epsilons, equation 34 can be rewritten as follows:  

NPP = Sc.Rs. εp.fAPAR.SM. εLUE. εT. ε𝐶𝑂2. εAR =Sc. fAPAR.SM. εLUERs.(T,CO2)  

= fAPAR.SM. εLUENPPmax [RES ]    

   (35)  

With: (T, CO2) = P.T.CO2.AR.  

This formulation better highlights the fact that, within the limits of the described model, NPP is only 

determined by six basic factors: fAPAR, soil moisture stress, radiation, temperature, land cover specific 

light use efficiency and CO2. However, in practice the CO2 level is mostly considered as a global 

constant. At the same time, the above equation provides a practical method to bypass the differences 

in temporal (and spatial) resolution between the inputs. The meteorological inputs (𝑅𝑠, 𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥) 

are provided on a daily basis, fAPAR and SM are derived from the dekadal data components and the 

final NPP product has a dekadal frequency. 

In practice the procedure according to Eerens et al. (2004) and as illustrated in Figure 10 is applied. 

 

                                                           
19 Solar radiation is mostly reported in terms of kJT/m²/day with variations between 0 and 32,000. This 
corresponds with 320 GJT/ha/day (1 hectare is 10,000m², and 1 GJ is 1,000,000 kJ). 
20 The autotrophic respiration is calculated as a simple fraction of NPP and is therefore assumed to have the 
same ecophysiological behaviour. It is not considered as an independent component. 
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Figure 10: Detailed process flow of NPP.  

 

Daily NPPmax is estimated based on meteorological data.  At the end of each dekad, a mean value 
composite of these NPPmax images is calculated. The final NPP10 product is retrieved by the simple 
multiplication of the mean value composite NPPmax  with the fAPAR, soil moisture stress and the land 
cover dependent light use efficiency. 
 

 Based on the meteorological inputs (𝑅𝑠, 𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥), the yearly fixed value of the CO2 level and the 

above-mentioned variant of the Monteith equation, data are generated with:  

NPPmax =Sc.Rs.(T,CO2) =Sc.Rs.P.T.CO2.AR       (36) 

 NPPmax represents the maximum obtainable NPP, for the (virtual) cases where fAPAR would be 

equal to one. 

 At the end of every dekad, a new data layer is computed with the mean of the daily NPPmax,1  scenes. 

Next, NPPmax,10, fAPAR and SM are simply multiplied to retrieve the final image with the NPP 

estimates.  

This practical approach can be formulated as follows (the subscripts 1 and 10 indicate daily and 

dekadal products, Nd is the number of days in each dekad): 

NPP10 = fAPAR10 . SM. εLUE.NPPmax,10      (37)   

with    NPPmax,10 = {NPPmax,1} /Nd    (38) 

 

Table 10:  Overview of NPP data component 

Data component Unit Range Use Temporal 
resolution 
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Net primary 
Production 
(NPP) 

gC/m2/day 0-5.41 
0-13.52 

Indicates the conversion of 
carbon dioxide into biomass 
driven by photosynthesis;  
Used to calculate AGBP data 
component 

Dekadal 

1Typical range in the ROI 
2Theoretical range for NPP 

 

2.1.7. Above Ground Biomass Production 

Description 

Above Ground Biomass Production (AGBP) is defined as the sum of the above-ground dry matter 

produced during the crop growing season. Hence, AGBP steadily increases between the start (SOS) 

and end of season (EOS).  

AGBP is a good indicator for crop yield forecasting/estimation because it integrates three important 

aspects: the current vegetation status (via fAPAR), the meteorological influences (via DMP) and the 

‘history’ (via the summation over the course of the season). AGBP, expressed in kgDM/ha/day, 

typically ranges between 0 and 45, although higher values are possible. As the AGBP is an integration 

of the DMP over time, its accuracy is closely related to the accuracy of the NPP, which is discussed in 

Section 2.1.6.  Figure 11 shows an example of the AGBP data component at Level 3. 

AGBP is delivered for Level 3, on a seasonal basis. The seasonal value represents the total accumulated 

biomass during one growing season, from SOS to EOS.  

 

A limitation for the derivation of AGBP is the dependency on phenological information, meaning that 

AGBP can only be derived for areas where seasonality is detected. For ecosystems, such as tropical 

forests or deserts, that experience almost no seasonality, the start of season is theoretically set at 

January 1st and end of season is set at December 31st. 
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Figure 11: Example of AGBP data component at Level 3 (Season 1, 2017). 
Source: FAO WaPOR, http://www.fao.org/in-action/remote-sensing-for-water-productivity/wapor 

 

 

 

Methodology 

Box 10: Above Ground Biomass Production in relation to other data components. 

 
 

 
 

 Calculating AGBP requires input from NPP for dekadal biomass production and Phenology 
for demarcating the growing season.  

 No external data source is required.  
 The output is seasonal for Level  3. 

 

To derive the accumulation in biomass production over or during a growing season, first the start and 

the end of the growing season need to be identified using the phenology data component. AGBP is 
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then calculated as the sum of NPP, converted21 into DMP units (kgDM/ha), between the start of the 

season (SOS) and the end of the season (EOS).  

In addition, a factor is included to account for the division between the above and below-ground 

components, here referred to as the AGBP Over Total (AOT) biomass production correction factor. 

According to literature, the AOT fraction is approximately 0.65 (see, for instance, Trischler et al., 2014).  

This fixed AOT of 0.65 is applied as a default value when calculating the seasonal AGBP. At the end of 

the season, when the crops for the area are known, the seasonal AGBP values can be adjusted using 

an additional AOT correction factor data layer that allows the user to correct the AGBP using the land 

cover specific AOT values.  

The equation to compute the seasonal AGBP for a given pixel thus becomes: 

𝐴𝐺𝐵𝑃𝑠 = ∑ 𝑁𝑑( i )
𝐸𝑂𝑆
𝑖 = 𝑆𝑂𝑆 ∗ DMP( i) ∗ 𝐴𝑂𝑇         (39) 

Where: 

 DMP(i) is the Dry Matter Production at dekad i, expressed in kgDM/ha/day. 

 Nd(i) is the number of days within each dekad, varying between 8 (end February) and 11. 

 The first term, Nd(i), is needed to obtain the AGBP sum in terms of kgDM/ha. Without it, one would 

obtain the mean. 

 AOT accounts for the fractioning between the above and total biomass (i.e. the AGBP Over Total 

(AOT) biomass production correction factor, where the default is AOT=0.65). 
 

 

Table 11: Overview of AGBP data component 

Data 
component 

Unit Range Use Temporal 
resolution 

AGBP kgDM/ha 0-20,000 
for 
seasonal 

Above-ground dry matter 
produced. It can be used to derive 
yields if information on phenology 
and harvest index are available. 

Seasonal 

 

2.1.8. Land Cover Classifications 

Description 

Land cover can be defined as the observed (bio)-physical cover on the earth’s surface, encompassing 

vegetation, bare rock and soil as well as human-made features. Land use, on the other hand, can be 

derived from the land cover, combined or linked with the activities or actions of people in their 

environment (Di Gregorio, 2005). WaPOR land cover mapping focuses on agricultural land cover and 

at level 3 identifies the main crop types of wheat, rice and maize as well as additional crops that cover 

more than 10% of the level 3 study areas (see Table 13). Furthermore, the level 3 land cover maps are 

produced for every dekad in the year, distinguishing between irrigated and rain fed cropland.  Data on 

agricultural land cover are important for evaluation of current land use practices as it can be coupled 

                                                           
21 Where 1 gC/m²/day (NPP) = 22.222 kgDM/ha/day (DMP), see Section 2.17. 
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with water productivity data, enabling the comparison between different crops within a region, or the 

same crop between different regions.  

The classes used for land cover mapping at levels 1, 2 and 3 as shown in Table 12 are compatible with 

the Land Cover Classification System (LCCS) that was developed by FAO and UNEP (Di Gregorio, 2005). 

This ensures that the land cover data created at all resolution levels is standardised, making it 

compatible with and easily compared, correlated and harmonized with other land cover data using 

this system.  

 

 

Table 12: Overview of land cover classes per Level 

Level 1 Level 2 Level 3 

Cropland rainfed Cropland rainfed Maize 
Rice 

Wheat 
Crop (covering more than 10% 

of  the area) 

Cropland irrigated Cropland irrigated Maize 
Rice 

Wheat 
Crop (covering more than 10% 

of  the area) 

Natural vegetation Tree cover Tree cover 
Shrubland Shrubland 
Grassland Grassland 
Wetland Wetland 

Artificial Artificial Artificial 
Bare soil Bare soil Bare soil 

Water body Permanent Permanent 

Seasonal Seasonal 

 

The result of a land cover classification can be evaluated in several ways, where the use of confusion 

matrix is commonly applied. However, the development of methods for the accuracy assessment of 

products derived from moderate to low spatial resolution data is still being researched (Foody, 

2002). Landscape characteristics such as land cover heterogeneity and patch size impact on 

classification accuracy at coarser resolutions, with the probability of a correct classification 

decreasing with decreasing patch size and increasing heterogeneity (Smith et al, 2003). The land 

cover classifications are independently validated and calibrated where necessary (see Reports on 

Validation results). 



Chapter 2: Methodology for the production of the data components 

37 
 

Methodology 

Box 11: Land Cover classification in relation to other data components. 

 

 
 Land Cover Classification makes use of dekadal NDVI time series and seasonal phenology 

information. 
 External data is required in the form of multispectral satellite imagery and other external 

ancillary datasets. 
 Classifying land cover and crops requires a substantial amount of reference data. This 

static input is derived from field work activities in the level 3 study areas.  
 The LCC output is dekadal, and is used to derive the harvest index for specific crops. 
 LCC dekadal output is used to determine the seasonal light use efficiency (LUE) correction 

factor for use with NPP. 
 LCC dekadal output is used to produce the seasonal AGBP Over Total (AOT) biomass 

production correction factor data layer to use with AGBP. 

 

The production of the land cover classification data component requires input from the Phenology 

data component to demarcate the season, as well as dekadal NDVI data and spectral reflectance data. 

External reference (training) data are an important component of land cover classification.  

The general workflow for level 3 land cover classification is shown in Figure 12. A supervised 

classification methodology is applied to assign a specific class to each pixel of the image. Training data 

consist of seasonal and long term metrics derived from dekadal NDVI time series, phenology and 

spectral reflectance data combined with reference data denoting the exact location of each of the 

classes specified in Table 12. The different components of the classification processing chain are 

discussed in the sections below.  

 

 

Figure 12: Schematic overview of the land cover classification processing chain at level 3. Different types of reference 
data as well as dekadal NDVI and multispectral remote sensing inputs are used to train a machine learning classifier.  
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Reference data 

A key component for the production of accurate land cover classifications is a sufficient amount of 

high quality reference data encompassing all the required classes for at least one moment in time and 

distributed relatively evenly. Since the level 3 land cover classifications are delivered on a dekadal 

basis22, a large amount of reference data is required. The gathering of suitable reference data is 

therefore one of the main challenges for the production of the Land Cover Classification data 

component.  

The accuracy of land cover mapping products strongly relies on the quality, quantity and accuracy of 

the reference data available. It should be noted that an over or under representation of a class and 

differences in sampling density between different classes within a reference dataset can greatly 

influence the classification outcome. For example, a relatively large amount of training points on 

forest cover is likely to result in an over-classification of forest cover. 

Fieldwork was conducted in each of the level 3 areas to collect reference data. In some areas 

additional existing historical reference data from external sources was used to add to the reference 

dataset.  

Classification metrics  

In addition to reference data depicting exact locations of the different classes, a classifier needs input 

variables which can aid in the differentiation between the different land cover types. These metrics 

are typically descriptors of the spectral behaviour of the different classes through time, exploiting the 

differences in phenology. The metrics describe the temporal behaviour of the individual spectral 

bands, a selection of vegetation indices and phenological descriptors. For these variables, descriptive 

statistics are extracted for the reference year as well as for the vegetation season and off-season 

within that reference year using phenological parameters (start- and end of season. The metrics used 

at level 3 are listed in Annex 2. 

Classifier 

A wide variety of classification algorithms have been used to map land cover from remotely sensed 

data. In the early stages of remote sensing, unsupervised classification and cluster labelling was the 

common method for large area land cover mapping (see Wulder et al., 2004). However, machine 

learning (ML) algorithms have since proven to be more accurate and efficient alternatives to 

conventional parametric algorithms23 when faced with large data volumes and complex feature 

spaces.  Many of the current global land cover maps have been produced with ML, e.g. Globeland30, 

GlobCover, CCI. The classifier applied in this project, Random Forest, is therefore a machine learning 

algorithm. To increase the accuracy of the classifier for identifying urban areas and water, existing 

peer-reviewed specialised external datasets are included in the training dataset. These datasets are 

not solely based on spectral satellites, but combine for example, digital elevation models and radar 

data. Further details are provided in the Data manual. 

Post processing 

After the ML classifier has produced an initial preliminary land cover map (on a seasonal basis), several 

post-processing steps are carried out to check and correct the land cover map. First, pixels in the land 

cover classification maps for season 2 that coincide with an “out of season” classification in the 

phenology data are relabelled as “fallow”. For all seasons, pixels classified as one of the main crops 

                                                           
22 The dekadal land cover data is derived from seasonal land cover  maps. 
23 For example Maximum Likelihood 
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that have a low (<70%) concomitant Land Cover Classification Quality value are relabelled as “Other 

crop”.  (A description of the Land Cover Quality layer is given below). Finally, temporal corrections are 

applied to the seasonal land cover for the entire time period. These rule-based corrections are based 

on the fact that certain land cover types are unlikely to change more than once over the entire 

historical time period, e.g. perennial crops and natural woodland can be seen as semi-permanent land 

cover which will not change into a seasonal crop and then later back into the original perennial crop 

or natural woodland. Pixels that exhibited such short-term temporary changes were relabelled to 

ensure a consistent pattern over time for semi-permanent land cover types. However if a change 

occurs and persists to the end of the historical time period, it is assumed that the vineyard, orchard 

or woodland was removed and replaced by a new land cover type. Similar rules were applied for urban 

areas.  In a final step, the post-processed seasonal land cover maps are converted to dekadal land 

cover maps using the phenology. 

Complementary data layer: Light Use Efficiency (LUE) Correction factor   
This additional raster layer is delivered to the WaPOR database to enable users to recalculate NPP and 

AGBP at the end of the season when the correct land cover for the season is known. It contains Light 

Use Efficiency (LUE) correction factors for all vegetated areas, where the (preliminary) NPP and AGBP 

are calculated using the default LUE value of 2.49 kgDM/GJPA (optimal LUE for cropland estimated by 

calibrating gross dry matter productivity per land cover class using flux tower GPP observations 

(Swinnen et al., 2018).  ). The LUE correction factor is the ratio between the actual LUE and the default 

LUE applied. At the end of the growing season, when the land cover classification is known and the 

LUE correction factor is calculated, the user can multiply the (preliminary) NPP or AGBP data with the 

LUE correction factor. The correction factor is 1 when the actual LUE is equal to the default LUE. In 

other cases it can either be higher or lower.  

Complementary data layer: AGBP Over Total (AOT) Biomass Production Correction factor   
This additional raster layer is delivered to the WaPOR database to enable users to recalculate AGBP at 

the end of the season when the correct land cover for the season is known. It contains AOT correction 

factors for agricultural areas only, where the preliminary seasonal AGBP was calculated using a default 

AOT value of 0.65. The AOT correction factor is the ratio between the actual AOT ratio and the default 

AOT originally applied. At the end of the growing season, when the agricultural crops are known from 

the land cover classification for the season, the user can multiply the AGBP data with the AOT 

correction factor. The correction factor is 1 when the AOT ratio is unchanged. For agricultural crops, 

the AOT correction factor can either be higher or lower than 1. 

Complementary data layer: Land Cover Classification Quality layer  
This additional raster layer is delivered to the WaPOR database to inform users about the quality of 

the land cover classification. A combination of factors influences the accuracy of the classification 

across a land cover classification map. All land cover maps contain a fraction of falsely classified pixels. 

At level 3, the land cover classification quality layer combines the result of the machine learning 

classifier quality output, with flags that indicate when pixels were reclassified during post-processing: 

a flag value of 241 indicates that a pixel was reclassified during post-processing whilst a flag of 240 

indicates that a pixel was reclassified using a fixed mask (used in isolated cases). A quality value close 

to 1 represents more certainty regarding the classification, whilst pixel values close to 0 indicate pixels 

for which the classification is less accurate. 

 

Table 13:  Overview of Land Cover data component 

Data component Unit Range Use Temporal resolution 
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Land Cover 
Classification 

- - Qualitative maps that show 
land cover according to the land 
cover classification scheme 
shown in Table 12. 

Dekadal 

LUE correction 
factor 

- - Used to recalculate NPP (and 
AGBP) at the end of the season 
when the correct land cover for 
the season is known. 

Seasonal 

AGBP Over Total 
(AOT) Biomass 
Production 
Correction factor   

- - Used to recalculate AGBP using 
the correct AOT ratio based on 
known land cover for the 
season. 

Seasonal 

Land Cover 
Classification 
Quality 

% 0-100, 
flags 
240,24
1 

Indicates the quality of the 
original ML classifier and 
whether a pixel was relabelled 
during post-processing. 

Seasonal 
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2.2. Intermediate data components 

2.2.1. NDVI 

Description 

The Normalized Difference Vegetation Index (NDVI) correlates well with photosynthetically active 

vegetation and is therefore a measure of the greenness of the earth’s surface.  Since it only requires 

a red and NIR band, the NDVI is a commonly used vegetation index that can easily be derived using 

most multispectral sensors. Dekadal NDVI composites are produced and used internally as input for 

the computation of various data components, such as fAPAR, E and T. NDVI values range between -1 

and 1. Vegetated areas have positive values closer to 1, bare soil/artificial surfaces have values of 

around 0, and water has negative NDVI values.   

 

 

Methodology 

Box 12: NDVI in relation to other data components. 

 
 

 
 

 Red and NIR reflectances are required to calculate NDVI.  
 The output is used in various data components, directly and indirectly. 

 

NDVI is based on the spectral reflectance of the red and near-infrared wavelengths. It is calculated as 

follows: 

 𝑁𝐷𝑉𝐼 =   ( 𝑁𝐼𝑅 − 𝑅𝑒𝑑 ) / ( 𝑁𝐼𝑅 + 𝑅𝑒𝑑 )       

 

At level 3, NDVI is first calculated using instantaneous satellite data24. These irregular satellite 

observations are then combined with dekadal composites for NDVI produced at level 1 to create 

dekadal NDVI composites at level 3. As at Levels 1 and 2, NDVI composites are produced to fill gaps 

and missing data that occur in the input satellite imagery.  When an insufficient number of data 

observations are available within a composite period, the results of gap filling are less accurate. This 

is more likely to happen at Level 3 due to the larger gap in satellite observations that occur within a 

dekad.  It should be noted that the Level 1 NDVI data used as inputs already include a certain degree 

of compositing and smoothing (see Methodology document for Level 1) with resulting implications for 

                                                           
24 Whereas satellite observations used at level 1 and 2 are made frequently (daily), higher resolution satellite 
data used for NDVI at level 3 have a much lower temporal resolution, with image acquisitions taking place 
approximately every 5-16 days. 
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accuracy. As mentioned above, the larger the gaps due to cloud coverage, the lower will be the 

accuracy of the prediction as a date as close as possible from the missing data should be used for 

resconstruction to ensure similar spectral characteristics. This is not always the case in level 3 areas 

where cloud occurrence is high (e.g. in Awash, Ethiopia).  

Data layers that indicate the quality of each of the dekadal NDVI data composites are produced for all 

three levels (see description of the methodology below).  

 

Complementary data layer: NDVI Quality layer 
The quality layer is produced during the compositing of the NDVI. The quality index (QI) for every pixel 

in each dekad depicts the number of days between the observation date and the closest 

instantanteous date used for reconstruction. In the case that the pixel observation is usable and no 

reconstruction was needed, the QI is set to 0 (ideal situation).    

This quality layer depicts the quality for the NDVI, fAPAR and NPP, as fAPAR and NPP are both 

calculated using the NDVI composites as input. Error! Reference source not found. shows an example o

f the NDVI quality data layer at Level 3. 

 

 

Table 14:  Overview of NDVI intermediate data component and complementary quality layer 

Data component Unit Range Use Temporal 
resolution 

NDVI  - -1 to 1 Measure of greenness of 
vegetation. 

Dekadal 

NDVI Quality layer days  Indicates quality of NDVI 
composite. 

Dekadal 
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2.2.2. Solar radiation 

Description 

The availability of solar energy is the main driver for evapotranspiration and biomass production. 

Unless water availability is limited, places that receive more solar radiation (through latitudinal 

location, sun angle and/or number of sunny days) are likely to have higher crop yields. Atmospheric 

conditions determine how much of the solar radiation that reaches the top of the earth’s atmosphere 

reaches the land surface25.  

This intermediate data component calculates the amount of solar radiation (expressed in Wm-2d-1) 

that reaches the land surface of a specific location on a specific day, based on the combined effect of 

location, date, local topography and atmospheric conditions. It is delivered on a daily basis for all three 

levels. Solar radiation values typically range from around 50 (when transmissivity is very low) to 

around 300 Wm-2d-1.  In addition to the daily solar radiation, another data component, the 

instantaneous solar radiation, is calculated separately. This data component calculates the amount of 

solar radiation (in Wm-2) at time of satellite overpass and is used as input to compute the soil moisture.  

Methodology 

Box 13: Solar Radiation in relation to other data components. 

 

 
 

 
 Surface downwelling solar radiation is required to calculate Solar Radiation.  
 A DEM is used to calculate the solar zenith angle to the land surface. 
 Solar Radiation is used for calculating SMC, E, T, RET and NPP. 

 

The amount of solar radiation that reaches the land surface is determined by a combination of factors. 

Latitudinal position, day of the year and local topography26 all determine the incidence angle of the 

sun at a specific location. Topographical features such as slope and aspect can be extracted from a 

digital elevation model (DEM) and are used to calculate the solar zenith angle to the surface. All these 

factors are combined to calculate the potential solar radiation for any location on the land surface at 

a given day. 

However, not all the potential solar radiation reaches the land surface. To determine the actual solar 

radiation reaching the earth’s surface, the potential solar radiation is adjusted for atmospheric 

transmissivity, a measure of the amount of solar radiation that is propagated through the atmosphere.  

The transmissivity is derived from surface downwelling solar (sds) radiation measurement which are 

regularly made during the day by geostationary meteorological satellites. Atmospheric transmissivity 

                                                           
25 Also referred to as Top of Canopy (TOC). 
26 For example, in the northern hemisphere, south facing slopes are warmer than north facing slopes. 
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can be calculated by comparing the calculated solar radiation at the top of atmosphere with the 

measured sds radiation. 

The atmosphere causes the scatter of a part of the incoming solar radiation. This effect increases as 

the transmissivity decreases. Under clear atmospheric conditions most of the solar radiation reaches 

the surface directly, as can be seen by the sharp shade of sunlit objects. Under hazy or cloudy 

conditions, shades are less sharply delineated as the scattering of solar radiation cause the radiation 

to come in from different directions. This effect has to be taken into account: the total available solar 

radiation that reaches the land surface is the sum of the direct and indirect (diffuse) solar radiation. 

Both are calculated with the transmissivity determining the ratio between them. A diffusion index is 

calculated which is provided as a function of the transmissivity. The diffusion index is 1 when 

transmissivity is low, indicating that no direct solar radiation is available, the diffusion index is 0 when 

transmissivity is high, indicating that no diffuse solar radiation is available. The next step involves the 

calculation of the solar radiation during different moments of the day. This requires complicated 

geometry mathematics, particularly for slopes. More detail on this part of the methodology can be 

found in Allen et al. (2006b).  

Although the transmissivity and DEM input data are the same resolution (approximately 5 km and 90 

m respectively) at all three levels, solar radiation is calculated separately for all three levels as the 

inputs are resampled for each level. 

The method to produce the instantaneous solar radiation (used as input in the soil moisture processing 

chain) is also applied at all three levels but differs from the one of the daily solar radiation described 

above. It is based on the implementation of the Solar Radiation Model r.sun whose detailed equations 

can be found in Suri and Hofierka (2004).  

Table 15:  Overview of Solar Radiation data component 

Data component Unit Range Use Temporal 
resolution 

Solar radiation Wm-2d-1 50-3001 Estimates daily solar radiation 
that reaches land surface at a 
specific location, used to 
calculate RET, E, T, NPP. 

Daily 

 Wm-2 0-1000 Estimates solar radiation that 
reaches land surface at a 
specific location and specific 
date and time, used to 
calculate SMC. 

Instantane
ous 

1 These values are typical low and high values and do not indicate maximum and minimum values. 

 

2.2.3. Soil moisture stress 

Description 

Soil moisture availability is one of the most important parameters governing biomass production and 

evapotranspiration. Lack of soil moisture can seriously hamper biomass growth by reducing vegetation 

transpiration. Soil moisture is directly released to the atmosphere from the top soil through 

evaporation and from the vegetation cover through transpiration.  
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Evaporation reduces as vegetation cover increases. Soils fully covered by vegetation experience very 

little evaporation as nearly all of the available energy is captured by the vegetation cover and used for 

transpiration. Transpiration drives the transport of soil moisture from the sub soil through plant roots. 

The root zone may hold more water and enables the plant to continue with transpiration even when 

the top soil is dry. 

Relative soil moisture content and stress is produced at all three levels at a dekadal temporal 

resolution. These are intermediate data components that are used as input to other data components 

and are not published through WaPOR. 

Soil moisture content varies strongly in time and place.  Within the WaPOR area of interest extremes 

occur in northern Africa and the Middle East where soil moisture content is very low throughout the 

year (with the exception of areas close to rivers) and the equatorial region which is characterised by 

high soil moisture content throughout the year. Other areas generally show more seasonal variation 

in soil moisture content. Pixel values of relative soil moisture content range between 0 and 1, where 

0 is equal to the soil moisture content at wilting point and 1 is equal to the soil moisture content at 

field capacity. Soil moisture stress values also range between 0 and 1, where 0 means no stress and 1 

maximum stress.  

Methodology 

Box 14: Soil moisture stress in relation to other data components. 

 

 
 

 Calculating Soil Moisture Stress requires Weather data input as well as NDVI intermediate 
data components.  

 Land Surface Temperature (LST) is required as external data source.  
 Soil moisture stress is used as input to calculate E and T. 
 Soil moisture stress is incorporated in the calculation of NPP. 

 

The methodology applied for calculating relative soil moisture content and soil moisture stress is 

based on the correlation between Land Surface Temperature (LST, derived from thermal infrared 

imagery), vegetation cover (derived from the NDVI) and soil moisture content. This is also known as 

the triangle method27  (Carlson, 2007). External input data required are visual/NIR and thermal 

imagery.  

                                                           
27 An alternative approach is based on the use of radar imagery from ASCAT. WaPOR data production partners 

apply the LST method as it has a higher resolution and therefore provides a better representation of the spatial 

variability of soil moisture content. It is also a better indicator for the water content in the root zone in the 

sub-soil than radar methods which are only able to observe soil moisture content in the top layer of the soil. 

The moisture content of these two soil layers is not necessarily correlated. The results based on radar also 
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The triangle method is named after the shape of the scatter plot that emerges when all pixels in an 

image are plotted with NDVI on one axis and temperature on the other axis. Discarding outliers, a 

triangle shape appears, delineated by two marked boundaries (see Figure 13). These boundaries 

represent two physical conditions of water availability at the land surface, called the cold edge and 

the warm edge. At the cold edge, water is readily available and the soil moisture content is at field 

capacity. Evapotranspiration takes place at maximum rate, with the latent heat flux at its maximum 

and the sensible heat flux at zero. In this situation, the LST is close to the ambient air temperature. At 

the warm edge no soil moisture is available and evapotranspiration and the latent heat flux are equal 

to zero.   

Incoming radiation increases LST. This increase depends on the vegetation cover (NDVI). The LST 

increase is highest when no vegetation is present and smallest when vegetation fully covers the land 

surface. Therefore, the difference between the cold and the warm edge is largest for bare soil and 

smallest for fully vegetated surfaces. In general, LST is lower when the soil moisture content and/or 

the vegetation cover are higher. 

 

Figure 13: An example of a scatter plot of NDVI versus surface radiant temperature taken from Carlson (2007). The cold 
edge on the left side and the warm edge on the right side of the point cloud are clearly distinguishable.  

A drawback of this method is that it requires calibration by manual selection of references pixels for 

each thermal image. This introduces subjectivity through the selection process and makes it difficult 

to operationalize for a larger area. This problem was overcome by the method developed by Yang et 

al. (2015). The original triangle method was modified by introducing the effect of stomatal closure of 

vegetation under dry condition as a result of water stress (Moran et al., 1994). As a result, the 

temperature of the warm edge at a fully vegetated surface becomes higher than under wet conditions. 

This results in a trapezoid shape as depicted in Figure 14, taken from the improved trapezoid method28 

of Yang et al. (2015).  

The trapezoid, corners numbered A, B, C, D, are defined by the linear relationship between LST and 

vegetation cover under the two extreme conditions of the cold edge and the warm edge. The top line 

segment (A – B) shows this relationship under completely dry conditions (no available soil moisture). 

                                                           
tend to be less accurate for areas with moderate to dense vegetation cover. eLEAF (leading partner of FRAME 

Consortium) has applied the LST method with good results in South Africa, Russia and Ukraine. 

28 Yang et al. (2015) report that their method is able to reproduce spatial and temporal patterns of observed 
surface soil moisture with an RMSE of 0.06 m3·m−3 at the field scale and 0.03 m3·m−3 at the regional scale. The 
approach has not been tested on a continental scale. 
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Point A represents bare soil. Point B represents full vegetation cover. The bottom line segment (D – C) 

represents soil moisture at field capacity. Again, on the left side (D) for bare soil and on the right side 

(C) for full vegetation cover. This linear relationship between LST and vegetation cover (under equal 

soil moisture conditions) is not only true for the extreme conditions but for each value of the soil 

moisture content, as shown by the soil wetness isolines in Figure 14. 

 

Figure 14: The trapezoidal vegetation coverage (Fc) / land surface temperature (LST) space (transposed axis). Points A, B, 
C and D are estimated for each separate pixel using modified Penman/Monteith equations.  
Source: Yang et al., 2015. 

The relative soil moisture content of a specific location (e.g. point E) can be derived from its relative 

distance to the cold edge (a) and warm edge (b) using: 

𝑆𝑒 =   𝑏 / ( 𝑎 + 𝑏 )       (40) 

Where:  

𝑎 =  𝐿𝑆𝑇 − 𝑇𝑚𝑖𝑛      (41) 

𝑏 = (1 − 𝐹𝑐) ∗ (𝑇𝑠,𝑚𝑎𝑥 − 𝑇𝑐,max  ) + 𝑇𝑐,𝑚𝑎𝑥 − 𝐿𝑆𝑇     (42) 

Solving these equations in order to derive the relative soil moisture content first requires calculation 

of the four corner points of the trapezoid (A – D) as well as information on vegetation cover and LST 

of point E. The NDVI intermediate data component is used to derive vegetation cover whilst LST is 

derived from thermal satellite imagery.  

Assuming no sensible heat flux, the temperature of the cold edge (C and D) is approximated by the 

wet-bulb temperature (𝑻𝒘𝒆𝒕) at around the same time as when the LST is measured. The wet bulb 

temperature is defined as the minimum temperature which may be achieved by bringing an air parcel 

to saturation by evaporation in adiabatic conditions (Monteith & Unsworth, 2013). Thus the cold edge 

conditions are considered to be such that there is enough soil moisture and a sufficient evaporation 

rate to  reach saturation of the cooling air and therefore for the temperature to approach 𝑻𝒘𝒆𝒕 . 

Compared to the cold edge, calculating the corner points A and B of the warm edge requires more 

effort. This is done with the Penman-Monteith equation rewritten to yield 𝑇𝑚𝑎𝑥 at point A and B.  We 

provide an overview of the steps below, more detail can be found in Yang et al. (2015).  

At the warm edge, a large part of the incoming radiation is used for heating the land surface, thus 

increasing LST. The amount of energy available depends on the incoming solar radiation (𝑹𝒔) and net 

long wave radiation (𝐿∗). The surface albedo (𝑎) is an important factor in determining how much of 

this energy is retained to heat the land surface. This requires the deduction of two theoretical albedo 
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values, one for bare soil (point A) and one for full vegetation cover (point B). Soils generally have a 

higher albedo, reflecting more of the incoming radiation than vegetated cover. Theoretical values can 

be derived from the land cover class and soil type maps. Here it is derived from the surface albedo 

intermediate data component.  

Part of the warming of the land surface is lost again through the sensible heat flux (𝐻). The sensible 

heat flux depends on the aerodynamic resistance to heat transfer determined by soil and canopy 

characteristics. Bare soils have a higher resistance than vegetation due to the lower surface roughness, 

resulting in a lower sensible heat flux. Surface roughness is derived from the land cover class. The 

method to calculate the aerodynamic resistance is based on Sanchez et al. (2008).  

For bare soil, the soil heat flux (𝐺) also has to be included, assuming a fixed fraction of the net radiation 

of 0.35. Soil heat flux does not need to be included for a fully vegetated surface as the soil surface is 

not directly heated by incoming radiation. 

This method is applied on a pixel-by-pixel basis with no spatial dependencies, making it possible to 

apply the same methodology for different regions in a consistent manner. However, parameterising 

the soil moisture algorithm on a continental scale is challenging, particularly for the Level 1 area of 

interest where soil moisture content, vegetation cover and weather conditions vary greatly (e.g. the 

dry Saharan desert and the wet tropical rainforests present extreme opposites). A specific challenge 

lies in the determination of the reference values for the corner points of the warm edge. Calculation 

of these hypothetical values depends on a number of assumptions under extreme conditions which 

can be challenging to estimate. The surface albedo intermediate data component is used to provide 

the minimum and maximum surface albedo which is input to the Yang algorithm. The surface albedo 

for point A (high surface albedo) and point B (low surface albedo) has been determined with the use 

of the albedo time series for each pixel, obtained from the albedo intermediate data component. By 

using these values instead of constant values, it is ensured that the theoretical maximum LST is being 

derived using realistic surface albedo values. 

The soil moisture content is determined for both the top soil and the root zone. Therefore the same 

soil moisture content is used for the determination of evaporation and transpiration, albeit in different 

formulations. Soil moisture stress limits transpiration by means of the canopy resistance. For 

evaporation the soil moisture content is used to model the soil resistance. The vegetation cover 

determines the route of the water flow, i.e. through transpiration or evaporation. 

By using the soil moisture content the model is able to separate between evaporation and 

transpiration. Some studies use the triangle/trapezoid method to calculate the evaporative fraction 

directly, but then it is not possible to make the distinction between transpiration and evaporation. 

Hence the need for the ETLook model. 

Soil moisture content composites 

Soil moisture is first determined on instantaneous basis i.e. on the dates of the Landsat acquisitions 

from instantaneous LST images with cloud covered parts masked out.  Corresponding gaps in the soil 

moisture time series are filled using a smoothing method based on the Savitzky-Golay filter (Chen et 

al. 2004). The method was originally developped by the authors to smooth out noise in NDVI time 

series and deal with cloud contamination by approaching the data to the higher NDVI enveloppe. To 

smooth the soil moisture time series, a modified and more ‘neutral’ version of the method is 

applied: the linear interpolation is still followed by a Savitzky-Golay smoothing but the iterative 

process by which the values are approached to a higher enveloppe is skipped. It should be noted 

that the results of the smoothing are used on masked pixels only whereas unmasked pixel values are 

kept to maximize accuracy. The instantaneous soil moisture is then converted to dekadal output.  
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Soil moisture stress 

The soil moisture content determines the availability of water for evaporation and transpiration. 

Whether this is reduced due to a shortage can be calculate with a stress factor. This stress factor for 

transpiration (𝑆𝑚 ) can be derived using the following relationship as defined in American Society of 

Civil Engineers (ASCE, 1996): 

𝑆_𝑚 = 𝐾_𝑠𝑓 𝑆_𝑒 − sin (2𝜋𝑆_𝑒 )/ 2𝜋      (43) 

The tenacity factor 𝐾𝑠𝑓 ranges from 1 for drought-sensitive plants to 3 for drought-insensitive 

(tenacious) plants. A default value of 1.5 is chosen when no crop information is available. 

This soil moisture stress factor, ranging between 1 and 0, is used as input for the E and T to reduce 

evapotranspiration. 

Table 16:   Overview of the (intermediate) data components related to Soil Moisture  

Data component Unit Range Use Temporal 
resolution 

Soil Moisture 
Content  

- 0-1 Used to calculate E and T Dekadal 

Soil Moisture Stress  - 0-1 Used to adjust NPP for the effect of 
soil moisture stress. 

Dekadal 

2.2.4. fAPAR and Albedo 

Description 

fAPAR and albedo both play an important role in the radiative energy balance of ecosystems and in 

the estimation of the carbon balance. fAPAR is the fraction of photosynthetically active radiation (400-

700nm) that is absorbed by the vegetation canopy (when only absorption by live leaves is taken into 

account, it is referred to as ‘green’ fAPAR). Albedo from the land surface is the ratio of the radiant flux 

over the shortwave spectrum (approximately 200-3000nm) reflected from the earth’s surface to the 

incident flux. Similar to the different definitions of the “spectral reflectance” (BRDF, R-factor, 

hemispherical reflectance), the integrated albedo also comes in different versions, but for this project 

it suffices to find the hemispherical albedo.  

Both these intermediate data components are produced at all three levels with a dekadal temporal 

resolution. They are not published through WaPOR, but are used as input for the calculation of NPP 

(fAPAR) and E and T (albedo).  Error! Reference source not found. shows an example of the fAPAR i

ntermediate data component at Level 3. fAPAR values range from 0 to 1. Error! Reference source not 

found. shows an example of the albedo intermediate data component at Level 3. Surface albedo varies 

in space and time as a result of processes such as changes in solar position, snowfall and changes in 

vegetation cover. A typical range for albedo of land areas is 0.1 to 0.4.  

Methodology 

Box 15: fAPAR and albedo in relation to other data components. 
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 External data sources are used as input. 
 fAPAR is used as input to various data components, e.g. NPP, E, T and intermediate data 

components such as soil moisture.  
 Surface albedo is used as input to produce E and T 

 

fAPAR 

fAPAR at Level 1 and 2 is estimated by using a direct relationship between the NDVI and a global fAPAR 

product, Figure 15 shows an example. To ensure consistency between the levels, the fAPAR for Level 

3 is derived using the same direct relationship as for Level 2 (see Figure 21). Further details of the 

processing are given in the Data Manual.  

 

Figure 15: Example of the relation between MODIS NDVI and the Copernicus29 fAPAR product with data from nine dates 
between 2014 and 2016 (dekads 4, 16 and 28 from 2014-16). 

 

                                                           
29 http://land.copernicus.eu/global/products/fapar 
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Albedo 

The method applied to calculate the albedo assigns a specific weight wi  to each available spectral band 

i. The assigned weights compensate for the uneven distribution of the incoming solar radiation over 

the spectrum and depend on the sensor of the input data (details are provided in the Data Manual). 

The final albedo is computed as r0 = wi.ri (summation over the i bands), with ri  and wi  the spectral 

reflectance and weight of the i-th band. Note that wi = 1.  

Gaps due to cloud coverage and other sources of missing data are filled using a smoothing method 

based on the Savitzky-Golay filter (Chen et al. 2004). The method was originally developped by the 

authors to smooth out noise in NDVI time series and deal with cloud contamination by approaching 

the data to the higher NDVI enveloppe. The method used here was modified to approach the lower 

enveloppe of the albedo time series as cloud occurrence lowers the NDVI but increases the albedo. 

Smoothing also allows to correct for atmospheric variabilty and incidence angle. After smoothing, 

the instantaneous albedo is converted to dekadal output. 

Table 17:  Overview of the intermediate data components related to fAPAR and albedo  

Data component Unit Range Use Temporal 
resolution 

fAPAR - 0-1 Used as input to NPP Dekadal 

Surface Albedo - 0.1-0.4 Used as input to produce E and T. Dekadal 

2.2.5. Weather data 

Description 

Biomass production and evapotranspiration are driven by meteorological conditions. The 

transmissivity (see section 2.2.2) of the atmosphere affects the available solar radiation at the land 

surface and precipitation, temperature, wind speed and relative humidity are important factors for 

evapotranspiration.  

The acquisition of temperature, wind speed and relative humidity data is discussed below. Although 

these parameters are routinely measured by most meteorological stations around the world the 

number of meteorological stations in the area of interest is relatively small.  WaPOR therefore uses a 

global atmospheric model to supply this data.  The advantages of these models are a good coverage 

of the whole project area and a high consistency. Drawback is the relatively low resolution of these 

data sources. Therefore, temperature data is adjusted for orography to improve results in 

mountainous areas, as explained below. 

WaPOR area covers various climate zones. For a map of the climate zones according to Kӧppen, see 

Methodology document for Level 1 . 

Air temperature (Tmin and Tmax, in Kelvin), relative humidity (in %) and wind speed (in ms-1) are 

produced for all three levels. These intermediate data components are produced as daily 

meteorological grids that are used as input to calculate E and T, RET, NPP and soil moisture stress. 

These intermediate data components are not published through WaPOR. The quality and resolution 

of the input data has a strong impact on the output data. Although some adjustments can be made to 

improve input meteorological data, they are generally based on coarse resolution products.  
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Methodology 

Box 16: Weather data in relation to other data components. 

 

 
 

 Weather data refers to air temperature, relative humidity and wind speed and is derived 
from an external data source.  

 Weather data is an important element for calculating biomass production and 
evapotranspiration, it is indirectly connected to most data components. 

 

Temperature, relative humidity and wind speed are derived from a global atmospheric model which 

uses both synoptic observations and global climate models to produce hourly grids for a large number 

of atmospheric variables.  

These data are resampled to match the resolution of the Level. In order to produce smooth 

meteorological data fields, relative humidity and wind speed are resampled using a bilinear 

interpolation method, and temperature is additionally resampled using information on elevation. 

Weather shows large variation over short distances, particularly in mountainous areas. Characterising 

this variability is difficult without detailed monitoring with many ground stations. Temperature is 

strongly affected by elevation. In general, temperature decreases 6˚C for every km of increasing 

elevation. The average input data temperature values are at 0.25 degrees resolution (i.e. pixel values 

representing  the average temperature within an area of approximately 25km) do not sufficiently take 

the effect of topography and elevation into account in mountainous areas. The temperature data is 

therefore resampled on the basis of elevation. This is done two steps: 

1. The average elevation of the input pixel is calculated by resampling the DEM to 0.25 degrees. 

The input temperature data is then assumed to be representative for this elevation.  

2. The temperature of every pixel at Level 1, 2 and 3 is recalculated on the basis of its elevation 

difference with the average elevation using the temperature lapse rate of 6˚C/km. 

Figure 16 shows an example where a DEM was used to resample coarse resolution global temperature 

data. The Bekaa valley is not visible in the original and bilinear resampled data. Resampling based on 

the elevation makes the valley visible, with cold mountain ranges on both sides and a relatively warm 

valley floor. The effect of aspect was not taken into account as this would introduce additional 

uncertainties that could not be quantified within the scope of the current exercise. 
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Figure 16: Example of coarse resolution global temperature data resampled for the Bekaa valley (circled) using a 
DEM. This example uses GEOS-5 temperature data. 

 

Table 18:  Overview of intermediate data components related to weather 

Data component Unit Range Use Temporal 
resolution 

Tmin and Tmax K  Used to calculate E, T, RET, NPP 
and soil moisture. 

Daily 

Relative humidity %  Used to calculate E, T,  RET, NPP 
and soil moisture. 

Daily 

Wind speed ms-1  Used to calculate E, T, RET, NPP 
and soil moisture. 

Daily 

  

Bilinear interpolation Original DEM corrected 
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Annex 1: summary table of sensors used in WaPOR v1.0, L3 
L3 Data component Input data components Sensor Data product Comment 

Actual 
Evapotranspiration 

Precipitation 
 

CHIRPS v2 
 

Surface albedo Landsat-
5,6,7 

 Landsat data is available over the 
whole time period. 

Weather data (temp, 
specific humidity, wind 
speed, air pressure) 

MERRA/
GEOS-5 

 
MERRA used up to start of GEOS-5 
(21-2-2014) 

NDVI Landsat-
5,6,7 

 Landsat data is available over the 
whole time period. 

Soil moisture stress Landsat-
5,6,7 

 
Land Surface Temperature and 
NDVI from Landsat data available 
over the whole time period. 

MERRA/
GEOS-5 

 MERRA used up to start of GEOS-5 
(21-2-2014) 

Solar radiation  
 

SRTM DEM 

MSG 
 

Transmissivity 

MERRA/
GEOS-5 

 MERRA used up to start of GEOS-5 
(21-2-2014) 

Land Cover Landsat-
5,6,7 

 
NDVI from Landsat data available 
over the whole time period. 

NPP Solar radiation  
 

SRTM DEM 

MSG 
 

Transmissivity 

MERRA/
GEOS-5 

 MERRA used up to start of GEOS-5 
(21-2-2014) 

Soil moisture stress Landsat-
5,6,7 

 
Land Surface Temperature and 
NDVI from Landsat data available 
over the whole time period. 

MERRA/
GEOS-5 

 MERRA used up to start of GEOS-5 
(21-2-2014) 

fAPAR Landsat-
5,6,7 

 NDVI from Landsat data available 
over the whole time period. 

Weather data (temp, 
specific humidity, wind 
speed, air pressure) 

MERRA/
GEOS-5 

 
MERRA used up to start of GEOS-5 
(21-2-2014) 

Precipitation 
 

CHIRPS v2 
 

Land Cover Landsat-
5,6,7 

 
NDVI from Landsat data available 
over the whole time period. 

Phenology NDVI Landsat-
5,6,7 

 
Landsat data is available over the 
whole time period. 

Land cover 
classification 

 Landsat-
5,6,7 

 NDVI from Landsat data available 
over the whole time period. 

Annex 1: Summary table of sensors and products used for Level 3 v1.0 release 
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Annex 2: Input metrics used for Level 3 land cover classification 
 

1. Seasonal metrics (defined by phenology data for the target season):  
 Derived from the dekadal NDVI dataset: 

o Percentiles: p5, p10, p25, p50, p75, p90, p95 
o IQR = (p75-p25) 
o Average,  
o Standard deviation,  
o Coefficient of variation 
o Minimum NDVI (that is not <0) 
o Dekad number of min NDVI 
o Maximum NDVI 
o Range (Max - min) 
o Dekad number of max NDVI 
o NDVI gradient up (first min value of the season to max NDVI) 
o NDVI gradient down (max NDVI to last min value of the season) 

 

 Spectral reflectances for the Landsat image with the max NDVI over the season: 
o Bands 1,2, 3, 4, 5, 6 
o NDWI = (b4-b5)/(b4+b5)  

 
2. Long-term metrics: 

 Derived from the dekadal NDVI dataset: 
o Percentiles over time: p5, p10, p25, p50, p75, p90, p95 
o IQR = (p75-p25) 
o Average,  
o Standard deviation,  
o Coefficient of variation 
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