PYTHON
BASICS

A PRACTICAL INTRODUCTION
TO PYTHON 3

FOURTH EDITION

BY THE REALPYTHON.COM TUTORIAL TEAM
DAVID AMOS, DAN BADER, JOANNA JABLONSKI, FLETCHER HEISLER

Python Basics: A Practical Introduction
to Python 3

Real Python

Python Basics: A Practical Introduction to Python 3
Revised and Updated 4th Edition

David Amos, Dan Bader, Joanna Jablonski, Fletcher Heisler
Copyright © Real Python (realpython.com), 2012—2020

For online information and ordering of this and other books by Real
Python, please visit realpython.com. For more information, please
contact us at info@realpython.com.

ISBN: 9781775093329 (paperback)

ISBN: 9781775093336 (electronic)

Cover design by Aldren Santos

Additional editing and proofreading by Jacob Schmitt

“Python” and the Python logos are trademarks or registered trade-
marks of the Python Software Foundation, used by Real Python with
permission from the Foundation.

Thank you for downloading this ebook. This ebook is licensed for your
personal enjoyment only. This ebook may not be resold or given away
to other people. If you would like to share this book with another per-
son, please purchase an additional copy for each recipient. If you're
reading this book and did not purchase it, or if it was not purchased for
your use only, then please return to realpython.com/pybasics-book
and purchase your own copy. Thank you for respecting the hard work
behind this book.

https://realpython.com/
https://realpython.com/
https://realpython.com/pybasics-book

This is a sample from “Python Basics: A Practical
Introduction to Python 3”

With the full version of the book you get a complete Python curriculum
to go all the way from beginner to intermediate-level. Every step along
the way is explained and illustrated with short & clear code samples.

Coding exercises within each chapter and our interactive quizzes help
fast-track your progress and ensure you always know what to focus on
next.

Become a fluent Pythonista and gain programming knowledge you
can apply in the real-world, today:

If you enjoyed the sample chapters you can purchase a full
version of the book at realpython.com/pybasics-book

https://realpython.com/pybasics-book

What Pythonistas Say About Python Basics: A Practical In-
troduction to Python 3

“T love [the book]! The wording is casual, easy to understand, and
makes the information flow well. I never feel lost in the material, and
it’s not too dense so it’s easy for me to review older chapters over and
over.

I've looked at over 10 different Python tutorials/books/online courses,
and I've probably learned the most from Real Python!”

— Thomas Wong

“Three years later and I still return to my Real Python books when I
need a quick refresher on usage of vital Python commands.”

— Rob Fowler

“I floundered for a long time trying to teach myself. I slogged through
dozens of incomplete online tutorials. I snoozed through hours of bor-
ing screencasts. I gave up on countless crufty books from big-time
publishers. And then I found Real Python.

The easy-to-follow, step-by-step instructions break the big concepts
down into bite-sized chunks written in plain English. The authors
never forget their audience and are consistently thorough and detailed
in their explanations. I'm up and running now, but I constantly refer
to the material for guidance.”

— Jared Nielsen

“T love the book because at the end of each particular lesson there are
real world and interesting challenges. I just built a savings estimator
that actually reflects my savings account — neat!”

— Drew Prescott

“As a practice of what you taught I started building simple scripts for
people on my team to help them in their everyday duties. When my
managers noticed that, I was offered a new position as a developer.

I know there is heaps of things to learn and there will be huge chal-
lenges, but I finally started doing what I really came to like.

Once again: MANY THANKS!”

— Kamil

“What I found great about the Real Python courses compared to others
is how they explain things in the simplest way possible.

A lot of courses, in any discipline really, require the learning of a lot of
jargon when in fact what is being taught could be taught quickly and
succinctly without too much of it. The courses do a very good job of
keeping the examples interesting.”

— Stephen Grady

“After reading the first Real Python course I wrote a script to automate
a mundane task at work. What used to take me three to five hours now
takes less than ten minutes!”

— Brandon Youngdale

“Honestly, throughout this whole process what I found was just me
looking really hard for things that could maybe be added or improved,
but this tutorial is amazing! You do a wonderful job of explaining and
teaching Python in a way that people like me, a complete novice, could
really grasp.

The flow of the lessons works perfectly throughout. The exercises truly
helped along the way and you feel very accomplished when you finish
up the book. I think you have a gift for making Python seem more
attainable to people outside the programming world.

This is something I never thought I would be doing or learning and
with a little push from you I am learning it and I can see that it will be
nothing but beneficial to me in the future!”

— Shea Klusewicz

“The authors of the courses have NOT forgotten what it is like to be
a beginner — something that many authors do — and assume noth-
ing about their readers, which makes the courses fantastic reads. The
courses are also accompanied by some great videos as well as plenty
of references for extra learning, homework assignments and example
code that you can experiment with and extend.

I really liked that there was always full code examples and each line
of code had good comments so you can see what is doing what.

I now have a number of books on Python and the Real Python ones
are the only ones I have actually finished cover to cover, and they
are hands down the best on the market. If like me, you're not a pro-
grammer (I work in online marketing) you’ll find these courses to be
like a mentor due to the clear, fluff-free explanations! Highly recom-
mended!”

— Craig Addyman

About the Authors

At Real Python you’ll learn real-world programming skills from a com-
munity of professional Pythonistas from all around the world.

The realpython.com website launched in 2012 and currently helps
more than three million Python developers each month with free
programming tutorials and in-depth learning resources.

Everyone who worked on this book is a practitioner with several years
of professional experience in the software industry. Here are the mem-
bers of the Real Python tutorial team who worked on Python Basics:

David Amos is the content technical lead for Real Python. After leav-
ing academia in 2015, David worked in various technical positions as
a programmer and data scientist. In 2019, David joined Real Python
full time to pursue his passion for education. He lead the charge on
rewriting and updating the Python Basics curriculum to Python 3.

Dan Bader is the owner and editor in chief of Real Python and the
main developer of the realpython.com learning platform. Dan has
been writing code for more than twenty years and holds a master’s
degree in computer science. He’s the author of Python Tricks, a best-
selling programming book for intermediate Python developers.

Joanna Jablonski is the executive editor of Real Python. She likes
natural languages just as much as she likes programming languages.
Her love for puzzles, patterns, and pesky little details led her to follow
a career in translation. It was only a matter of time before she would
fall in love with a new language: Python! She joined Real Python in
2018 and has been helping Pythonistas level up ever since.

Fletcher Heisler is the founder of Hunter2, where he teaches de-
velopers how to hack and secure modern web apps. As one of the
founding members of Real Python, Fletcher wrote the first version of
the Python curriculum this book is based on in 2012.

https://realpython.com
https://realpython.com

Contents

Contents

Foreword

1

3

Introduction

1.1 WhyThisBook?
1.2 AboutReal Python
1.3 HowtoUseThisBook.
1.4 Bonus Material and Learning Resources

Setting Up Python

2.1 ANoteonPythonVersions
2.2 Windows
23 macOS e e
24 Ubuntulinux

Your First Python Program

3.1 Write a Python Program
3.2 MessThingsUp
3.3 CreateaVariable
3.4 Inspect Values in the Interactive Window
3.5 Leave Yourself HelpfulNotes
3.6 Summary and Additional Resources

Strings and String Methods
41 WhatlIsaString?
4.2 Concatenation, Indexing, and Slicing

13

20
21
23
24
25

29
30
31
34
37

42
43
47
50
55
58
60

Contents

4.3 Manipulate Strings With Methods 79
4.4 Interact WithUserInput 85
4.5 Challenge: Pick Apart Your User’sInput 88
4.6 Working With Strings and Numbers 88
4.7 Streamline Your Print Statements 94
4.8 FindaStringinaString. 96
4.9 Challenge: Turn Your User Intoa L33t H4xor 99
4.10 Summary and Additional Resources 100
Numbers and Math 102
5.1 Integers and Floating-Point Numbers 103
5.2 Arithmetic Operators and Expressions 107
5.3 Challenge: Perform Calculations on User Input . . . 115
5.4 Make Python LietoYou. 116
5.5 Math Functions and Number Methods 118
5.6 Print NumbersinStyle 123
5.7 Complex Numbers 126
5.8 Summary and Additional Resources 130
Functions and Loops 132
6.1 WhatIsaFunction,Really? 133
6.2 Write Your Own Functions 137
6.3 Challenge: Convert Temperatures 146
6.4 RuninCircles 147
6.5 Challenge: Track Your Investments. 156
6.6 Understand Scopein Python 157
6.7 Summary and Additional Resources 162
Finding and Fixing Code Bugs 164
7.1 Use the Debug Control Window 165
7.2 Squash SomeBugs 171
7.3 Summary and Additional Resources 179
Conditional Logic and Control Flow 181
8.1 CompareValues. 182
82 AddSomelogic. 186
8.3 Control the Flow of Your Program 194

Contents

8.4 Challenge: Find the Factors of a Number
8.5 BreakOutofthePattern
8.6 RecoverFromErrors
8.7 Simulate Events and Calculate Probabilities
8.8 Challenge: Simulate a Coin Toss Experiment
8.9 Challenge: Simulate an Election
8.10 Summary and Additional Resources

Tuples, Lists, and Dictionaries

9.1 Tuples Are Immutable Sequences
9.2 Lists Are Mutable Sequences
9.3 Nesting, Copying, and Sorting Tuples and Lists . . .
9.4 Challenge: Listoflists.
9.5 Challenge: WaxPoetic
9.6 Store Relationships in Dictionaries
9.7 Challenge: Capital CityLoop
9.8 Howto Pick a Data Structure
9.9 Challenge: Cats WithHats
9.10 Summary and Additional Resources

10 Object-Oriented Programming (OOP)

10.1 DefineaClass
10.2 Instantiatean Object
10.3 Inherit From OtherClasses
10.4 Challenge: Modela Farm
10.5 Summary and Additional Resources

11 Modules and Packages

11.1 Working WithModules
11.2 Working With Packages
11.3 Summary and Additional Resources

12 File Input and Output

12.1 Files and the File System
12.2 Working With File Pathsin Python
12.3 Common File System Operations
12.4 Challenge: Move All Image Files to a New Directory .

297

298
299
310
318

320
321
324
333
350

10

Contents

12.5 Reading and Writing Files
12.6 Read and WriteCSVData
12.7 Challenge: Create a High Scores List
12.8 Summary and Additional Resources

13 Installing Packages With pip
13.1 Installing Third-Party Packages Withpip
13.2 The Pitfalls of Third-Party Packages
13.3 Summary and Additional Resources

14 Creating and Modifying PDF Files
14.1 Extracting Text FromaPDF
14.2 Extracting Pages FromaPDF
14.3 Challenge: pafrileSplitter Class
14.4 Concatenating and Merging PDFs
14.5 Rotating and Cropping PDF Pages
14.6 Encrypting and Decrypting PDFs
14.7 Challenge: UnscrambleaPDF
14.8 Creating a PDF File From Scratch
14.9 Summary and Additional Resources

15 Working With Databases
15.1 An Introductionto SQLite
15.2 Libraries for Working With Other SQL Databases . .
15.3 Summary and Additional Resources

16 Interacting With the Web
16.1 Scrape and Parse Text From Websites
16.2 Use an HTML Parser to Scrape Websites
16.3 Interact With HTMLForms
16.4 Interact With Websitesin Real Time
16.5 Summary and Additional Resources

17 Scientific Computing and Graphing
17.1 Use NumPy for Matrix Manipulation
17.2 Use Matplotlib for Plotting Graphs
17.3 Summary and Additional Resources

442
443
455
456

458
459
469
475

11

Contents

18 Graphical User Interfaces
18.1 Add GUI Elements With EasyGUI
18.2 Example App: PDF Page Rotator
18.3 Challenge: PDF Page Extraction Application
18.4 Introductionto Tkinter
18.5 Working With Widgets
18.6 Controlling Layout With Geometry Managers
18.7 Making Your Applications Interactive . . .
18.8 Example App: Temperature Converter . . .
18.9 Example App: Text Editor
18.10 Challenge: Return of the Poet
18.11 Summary and Additional Resources

19 Final Thoughts and Next Steps
19.1 Free Weekly Tips for Python Developers . .
19.2 Python Tricks: The Book
19.3 Real Python Video Course Library
19.4 Acknowledgements

12

Foreword

Hello, and welcome to Python Basics: A Practical Introduction to
Python 3. I hope you're ready to learn why so many professional and
hobbyist developers are drawn to Python and how you can begin
using it on your own projects, small and large, right away.

This book is targeted at beginners who either know a little program-
ming but not the Python language and ecosystem or are starting fresh
with no programming experience whatsoever.

If you don’t have a computer science degree, don’t worry. David, Dan,
Joanna, and Fletcher will guide you through the important comput-
ing concepts while teaching you the Python basics and, just as impor-
tantly, skipping the unnecessary details at first.

Python Is a Full-Spectrum Language

When learning a new programming language, you don’t yet have the
experience to judge how well it will serve you in the long run. If you're
considering learning Python, let me assure you that this is a good
choice. One key reason is that Python is a full-spectrum language.

What do I mean by this? Some languages are very good for beginners.
They hold your hand and make programming super easy. We can go
to the extreme and look at visual languages such as Scratch.

In Scratch, you get blocks that represent programming concepts like
variables, loops, method calls, and so on, and you drag and drop them
on a visual surface. Scratch may be easy to get started with for sim-

13

Contents

ple programs, but you cannot build professional applications with it.
Name one Fortune 500 company that powers its core business logic
with Scratch.

Come up empty? Me too, because that would be insanity.

Other languages are incredibly powerful for expert developers. The
most popular one in this category is likely C++ and its close relative,
C. Whichever web browser you used today was likely written in C or
C++. Your operating system running that browser was very likely also
built with C/C++. Your favorite first-person shooter or strategy video
game? You nailed it: C/C++.

You can do amazing things with these languages, but they are wholly
unwelcoming to newcomers looking for a gentle introduction.

You might not have read a lot of C++ code. It can almost make your
eyes burn. Here’s an example, a real albeit complex one:

template <typename T>
_Defer<void(*(PID<T>, void (T::*)(void)))
(const PID<T>&, void (T::*)(void))>
defer(const PID<T>& pid, void (T::*method)(void))
{
void (*dispatch)(const PID<T>&, void (T::*)(void)) =
&process: :template dispatch<T>;
return std::trl::bind(dispatch, pid, method);
}

Please, just no.

Both Scratch and C++ are decidedly not what I would call full-
spectrum languages. With Scratch, it’s easy to start, but you have to
switch to a “real” language to build real applications. Conversely, you
can build real apps with C++, but there’s no gentle on-ramp. You
dive headfirst into all the complexity of the language, which exists to
support these rich applications.

14

Contents

Python, on the other hand, is special. It is a full-spectrum language.
We often judge the simplicity of a language based on the Hello, World
test. That is, what syntax and actions are necessary to get the language
to output Hello, world to the user? In Python, it couldn’t be simpler:

print("Hello, World")

That’s it! However, I find this an unsatisfying test.

The Hello, world test is useful but really not enough to show the power
or complexity of a language. Let’s try another example. Not every-
thing here needs to make total sense—just follow along to get the Zen
of it. The book covers these concepts and more as you go through. The
next example is certainly something you could write as you get near
the end of the book.

Here’s the new test: What would it take to write a program that ac-
cesses an external website, downloads the content to your app in mem-
ory, then displays a subsection of that content to the user? Let’s try
that experiment using Python 3 with the help of the requests package
(which needs to be installed—more on that in chapter 12):

import requests

resp = requests.get("http://olympus.realpython.org")
html = resp.text

print (html[86:132])

Incredibly, that’s it! When run, the program outputs something like
this:

<h2>Please log in to access Mount Olympus:</h2>

This is the easy, getting-started side of the Python spectrum. A few
trivial lines can unleash incredible power. Because Python has access
to so many powerful but well-packaged libraries, such as requests, it’s
often described as having batteries included.

15

Contents

So there you have a simple yet powerful starter example. On the real-
world side of things, many incredible applications have been written
in Python as well.

YouTube, the world’s most popular video streaming site, is written in
Python and processes more than a million requests per second. Insta-
gram is another example of a Python application. Closer to home, we
even have realpython.com and my sites, such as talkpython.fm.

This full-spectrum aspect of Python means that you can start with
the basics and adopt more advanced features as your application de-
mands grow.

Python Is Popular

You might have heard that Python is popular. It may seem that it
doesn’t really matter how popular a language is so long as you can
build the app you want to build with it.

But, for better or worse, the popularity of a programming language
is a strong indicator of the quality of libraries you’ll have available as
well the number of job openings you’ll find. In short, you should tend
to gravitate toward more popular technologies as there will be more
choices and integrations available.

So, is Python actually that popular? Yes it is. You’'ll find a lot of
hype and hyperbole, but there are plenty of stats backing this claim.
Let’s look at some analytics presented by stackoverflow.com, a popu-
lar question-and-answer site for programmers.

Stack Overflow runs a site called Stack Overflow Trends where you can
look at the trends for various technologies by tag. When you compare

16

Contents

Python to the other likely candidates you could pick to learn program-
ming, you'll see one is unlike the others:

16.00% — Tag
® python

Javascript
® java
®c

14.00% —

12.00% —

10.00% —

8.00% —

6.00% —

4.00% —

2.00% —

0.00% —

% of Stack Overflow questions that month

U i 1 1 1 i 1 1 1 1 1 i
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Year

You can explore this chart and create similar charts to this one over at
insights.stackoverflow.com/trends.

Notice the incredible growth of Python compared to the flat or even
downward trend of the other usual candidates! If you're betting your
future on the success of a given technology, which one would you
choose from this list?

That’s just one chart—what does it really tell us? Well, let’s look at
another. Stack Overflow does a yearly survey of developers. It’s com-
prehensive and very well done. You can find the full 2020 results at
insights.stackoverflow.com/survey/2020.

From that writeup, I’d like to call your attention to a section titled
“Most Loved, Dreaded, and Wanted Languages.” In the “Most
Wanted” section, you'll find data on the share of “developers who are
not developing with the language or technology but have expressed
interest in developing with it.”

17

https://insights.stackoverflow.com/trends?tags=c%23%2Cjava%2Cjavascript%2Cpython%2Cc%2B%2B
https://insights.stackoverflow.com/survey/2020
https://insights.stackoverflow.com/survey/2020/#technology-most-loved-dreaded-and-wanted-languages

Contents

Again, in the graph below, you’ll see that Python is topping the charts
and is well above even second place:

Python 25.7%
JavaScript 17.8%
Go 15.0%
TypeScript 14.6%
Kotlin 11.1%
Rust 9.5%
C++ 9.1%

WebAssembly 8.9%

If you agree with me that the relative popularity of a programming
language matters, then Python is clearly a good choice.

We Don’t Need You to Be a Computer Scientist

One other point that I want to emphasize as you start your Python
learning journey is that we don’t need you to be a computer scientist.
If that’s your goal, then great. Learning Python is a powerful step
in that direction. But the invitation to learn programming is often
framed as “We have all these developer jobs going unfilled! We need
software developers!”

That may or may not be true. But, more importantly, programming
(even a little programming) can be a personal superpower for you.

To illustrate this idea, suppose you are a biologist. Should you drop
out of biology and get a job as a front-end web developer? Probably
not. But skills such as the one I opened this foreword with, using re-
quests to get data from the Web, can be incredibly powerful for you as
a biologist.

Rather than manually exporting and scraping data from the Web or
from spreadsheets, you can use Python to scrape thousands of data
sources or spreadsheets in the time it takes you to do just one man-

18

Contents

ually. Python skills can take your biology power and amplify it well
beyond your colleagues’ to make it your superpower.

Dan and Real Python

Finally, let me leave you with a comment on your authors. Dan Bader
and the other Real Python authors work day in and day out to bring
clear and powerful explanations of Python concepts to all of us via
realpython.com.

They have a unique view into the Python ecosystem and are keyed into
what beginners need to know.

I'm confident leaving you in their hands on this Python journey. Go
forth and learn this amazing language using this great book. Most
importantly, remember to have fun!

— Michael Kennedy, Founder of Talk Python (@mkennedy)

19

https://twitter.com/mkennedy

Chapter 1

Introduction

Welcome to Real Python’s Python Basics book, fully updated for
Python 3.9! In this book, you’ll learn real-world Python program-
ming techniques, illustrated with useful and interesting examples.

Whether you’re a new programmer or a professional software devel-
oper looking to dive into a new language, this book will teach you all
the practical Python that you need to get started on projects of your
own.

No matter what your ultimate goals may be, if you work with a com-
puter at all, then you’ll soon be finding endless ways to improve your
life by automating tasks and solving problems through Python pro-
grams that you create.

But what’s so great about Python as a programming language? For
one, Python is open source freeware, meaning you can download it
for free and use it for any purpose, commercial or not.

Python also has an amazing community that has built a number of
useful tools that you can use in your own programs. Need to work
with PDF documents? There’s a comprehensive tool for that. Want to
collect data from web pages? No need to start from scratch!

20

1.1. Why This Book?

Python was built to be easier to use than other programming lan-
guages. It’s usually much easier to read Python code and much faster
to write code in Python than in other languages.

For instance, here’s some basic code written in C, another commonly
used programming language:

#include <stdio.h>

int main(void)
{

printf("Hello, World\n");
}

All the program does is show the text Hello, world on the screen. That
was a lot of work to output one phrase! Here’s the same program writ-
ten in Python:

print("Hello, World")

That’s pretty simple, right? The Python code is faster to write and
easier to read. We find that it looks friendlier and more approachable,
too!

At the same time, Python has all the functionality of other languages
and more. You might be surprised by how many professional products
are built on Python code: Instagram, YouTube, Reddit, Spotify, to
name just a few.

Python is not only a friendly and fun language to learn, but it also pow-
ers the technology behind multiple world-class companies and offers
fantastic career opportunities for any programmer who masters it.

1.1 Why This Book?

Let’s face it: there’s an overwhelming amount of information about
Python on the Internet. But many beginners studying on their own
have trouble figuring out what to learn and in what order to learn it.

21

1.1. Why This Book?

You may be asking yourself, What should I learn about Python in the
beginning to get a strong foundation? If so, then this book is for you,
no matter if you're a complete beginner or if you've already dabbled
in Python or other languages.

Python Basics is written in plain English and breaks down the core
concepts that you really need to know into bite-sized chunks. This
means you’ll learn enough to be dangerous with Python, fast.

Instead of just going through a boring list of language features, you’ll
see exactly how the different building blocks fit together and what’s
involved in building real applications and scripts with Python.

Step by step, you'll master fundamental Python concepts that will help
you get started on your journey toward learning Python.

Many programming books try to cover every last possible variation
of every command, which makes it easy for readers to get lost in the
details. This approach is great if you’re looking for a reference manual,
but it’s a horrible way to learn a programming language. Not only do
you spend most of your time cramming things into your head that
you’ll never use, but you also don’t have any fun!

This book is built on the 80/20 principle, which suggests that you can
learn most of what you need to know by focusing on a few crucial con-
cepts. We'll cover the commands and techniques used in the vast ma-
jority of cases and focus on how to program real-world solutions to
everyday problems.

This way, we guarantee that you will:

+ Learn useful programming techniques quickly
» Spend less time struggling with unimportant complications
+ Find more practical uses for Python in your own life

« Have more fun in the process

22

1.2. About Real Python

Once you've mastered the material in this book, you will have gained
a strong enough foundation that venturing out on your own into more
advanced territory will be a breeze.

What you’ll learn here is based on the first part of the original Real
Python Course initially released in 2012. Over the years, this Python
curriculum has been battle-tested by thousands of Pythonistas, data
scientists, and developers working for companies big and small, in-
cluding Amazon, Red Hat, and Microsoft.

For Python Basics, we’ve thoroughly expanded, refined, and updated
the material so you can build your Python skills quickly and efficiently.

1.2 About Real Python

At Real Python, youll learn real-world programming skills from a
community of professional Pythonistas from all around the world.

The realpython.com website launched in 2012 and currently helps
more than three million Python developers each month with books,
programming tutorials, and other in-depth learning resources.

Everyone who worked on this book is a Python practitioner recruited
from the Real Python team with several years of professional experi-
ence in the software industry.

Here’s where you can find Real Python on the Web:

« realpython.com

@realpython on Twitter

The Real Python Newsletter

The Real Python Podcast

23

https://realpython.com
https://realpython.com
https://realpython.com
https://twitter.com/realpython
https://realpython.com/newsletter
https://realpython.com/podcast

1.3. How to Use This Book

1.3 How to Use This Book

The first half of this book is a quick but thorough overview of all the
Python fundamentals. You don’t need any prior experience with pro-
gramming to get started. The second half is focused on finding practi-
cal solutions to interesting, real-world coding problems.

If you're a beginner, then we recommend that you go through the first
half of this book from beginning to end. The second half covers topics
that don’t overlap as much, so you can jump around more easily, but
the chapters do increase in difficulty as you go along.

If you're a more experienced programmer, then you may find yourself
heading toward the second part of the book right away. But don’t ne-
glect getting a strong foundation in the basics first, and be sure to fill
in any knowledge gaps along the way.

Most sections within a chapter are followed by review exercises to
help you make sure that you’ve mastered all the topics covered. There
are also a number of code challenges, which are more involved and
usually require you to tie together several different concepts from pre-
vious chapters.

The practice files that accompany this book also include full solutions
to the challenges as well as some of the trickier exercises. But to get
the most out of the material, you should try your best to solve the chal-
lenge problems on your own before looking at the example solutions.

If you're completely new to programming, then you may want to sup-
plement the first few chapters with additional practice. We recom-
mend working through the entry-level tutorials available for free at
realpython.com to make sure you're on solid footing.

If you have any questions or feedback about the book, you're always
welcome to contact us directly.

24

https://realpython.com/python-basics
https://realpython.com/contact

1.4. Bonus Material and Learning Resources

Learning by Doing

This book is all about learning by doing, so be sure to actually type
in the code snippets you encounter in the book. For best results, we
recommend that you avoid copying and pasting the code examples.

You'll learn the concepts better and pick up the syntax faster if you
type out each line of code yourself. Plus, if you screw up—which is to-
tally normal and happens to all developers on a daily basis—the simple
act of correcting typos will help you learn how to debug your code.

Try to complete the review exercises and code challenges on your own
before getting help from outside resources. With enough practice,
you’ll master this material—and have fun along the way!

How Long Will It Take to Finish This Book?

If you’re already familiar with a programming language, then you
could finish this book in as little as thirty-five to forty hours. If you're
new to programming, then you may need to spend up to one hundred
hours or more.

Take your time and don’t feel like you have to rush. Programming is a
super-rewarding but complex skill to learn. Good luck on your Python
journey. We're rooting for you!

1.4 Bonus Material and Learning
Resources

This book comes with a number of free bonus resources and down-
loads that you can access online at the link below. We'’re also main-
taining an errata list with corrections there:

realpython.com/python-basics/resources

25

https://realpython.com/python-basics/resources/

1.4. Bonus Material and Learning Resources

Interactive Quizzes

Most chapters in this book come with a free online quiz to check your
learning progress. You can access the quizzes using the links provided
at the end of the chapter. The quizzes are hosted on the Real Python
website and can be viewed on your phone or computer.

Each quiz takes you through a series of questions related to a particu-
lar chapter in the book. Some of them are multiple choice, some will
ask you to type in an answer, and some will require you to write ac-
tual Python code. As you make your way through each quiz, it will
keep score of which questions you answered correctly.

At the end of the quiz, you’ll receive a grade based on your result. If
you don’t score 100 percent on your first try, don’t fret! These quizzes
are meant to challenge you. It’s expected that you’ll go through them
several times, improving your score with each run.

Exercises Code Repository

This book has an accompanying code repository on the Web contain-
ing example source code as well as the answers to exercises and code
challenges. The repository is broken up by chapter, so you can check
your code against the solutions provided by us after you finish each
chapter. Here’s the link:

realpython.com/python-basics/exercises

The code found in this book has been tested with Python 3.9 on
Windows, macOS, and Linux.

26

https://realpython.com/python-basics/exercises
https://github.com/realpython/python-basics-exercises

1.4. Bonus Material and Learning Resources

Example Code License

The example Python scripts associated with this book are licensed un-
der a Creative Commons Public Domain (CCo) License. This means
that you’re welcome to use any portion of the code for any purpose in
your own programs.

Formatting Conventions

Code blocks will be used to present example code:

This is Python code:
print("Hello, World")

Terminal commands follow the Unix format:

$ # This is a terminal command:

$ python hello-world.py

(The dollar signs are not part of the command.)

Monospace text will be used to denote a filename: hello-world.py.
Bold text will be used to denote a new or important term.
Keyboard shortcuts will be formatted as follows: [Ctrl|+[S |

Menu shortcuts will be formatted as follows:

Notes and important information will be highlighted as follows:

This is a note filled in with placeholder text. The quick brown
fox jumps over the lazy dog. The quick brown Python slithers
over the lazy hog.

27

https://creativecommons.org/publicdomain/zero/1.0/

1.4. Bonus Material and Learning Resources

Feedback and Errata

We welcome ideas, suggestions, feedback, and the occasional rant.
Did you find a topic confusing? Did you find an error in the text or
code? Did we leave out a topic that you’d love to know more about?

We're always looking to improve our teaching materials. Whatever
the reason, please send in your feedback at the link below:

realpython.com/python-basics/feedback

28

https://realpython.com/python-basics/feedback

Chapter 2

Setting Up Python

This book is about programming computers with Python. You could
read this book from cover to cover without ever touching a keyboard,
but you’d miss out on the fun part—coding!

To get the most out of this book, you need a computer with Python
installed on it and a way to create, edit, and save Python code files.

In this chapter, you’ll learn how to:

« Install the latest version of Python 3 on your computer

« Open IDLE, Python’s built-in Integrated Development and
Learning Environment

Let’s get started!

29

2.1. A Note on Python Versions

2.1 A Note on Python Versions

Many operating systems, including macOS and Linux, come with
Python preinstalled. The version of Python that comes with your
operating system is called the system Python.

The system Python is used by your operating system and is usually out
of date. It’s essential that you have the most recent version of Python
so that you can successfully follow along with the examples in this
book.

Do not attempt to uninstall the system Python!

You can have multiple versions of Python installed on your computer.
In this chapter, you’ll install the latest version of Python 3 alongside
any system Python that may already exist on your machine.

Even if you already have Python 3.9 installed, it’s still a good
idea to skim this chapter to double-check that your environ-
ment is set up for following along with this book.

This chapter is split into three sections: Windows, macOS, and
Ubuntu Linux. Find the section for your operating system and follow
the steps to get set up, then skip ahead to the next chapter.

If you have a different operating system, then check out Real Python’s
“Python 3 Installation & Setup Guide” to see if your OS is covered.
Readers on tablets and mobile devices can refer to the “Online Python
Interpreters” section for some browser-based options.

30

https://realpython.com/installing-python/
https://realpython.com/installing-python/#online-python-interpreters
https://realpython.com/installing-python/#online-python-interpreters

2.2. Windows

2.2 Windows

Follow these steps to install Python 3 and open IDLE on Windows.

Important

The code in this book is tested only against Python installed as
described in this section.

Be aware that if you have installed Python through some other
means, such as Anaconda Python, you may encounter problems
when running some of the code examples.

Install Python

Windows doesn’t typically come with a system Python. Fortunately,
installation involves little more than downloading and running the
Python installer from the Python.org website.
Step 1: Download the Python 3 Installer

Open a web browser and navigate to the following URL:
https://www.python.org/downloads/windows/

Click Latest Python 3 Release - Python 3.x.x located beneath the
“Python Releases for Windows” heading near the top of the page. As
of this writing, the latest version was Python 3.9.

Then scroll to the bottom and click Windows x86-64 executable in-
staller to start the download.

If your system has a 32-bit processor, then you should choose
the 32-bit installer. If you aren’t sure if your computer is 32-bit
or 64-bit, stick with the 64-bit installer mentioned above.

31

https://www.python.org
https://www.python.org/downloads/windows/

2.2. Windows

Step 2: Run the Installer

Open your Downloads folder in Windows Explorer and double-click
the file to run the installer. A dialog that looks like the following one

will appear:

5 Python 3.8.4 (32-bit) Setup

} Install Python 3.8.4 (32-bit)
Select Install Now to install Python with default settings, or choose

Customize to enable or disable features.

@ Install Now

C:\Users\damos\AppData\Local\Programs\Python\Python38-32

Includes IDLE, pip and documentation
Creates shortcuts and file associations

—> Customize installation
Choose location and features

pgthpn

windows [Add Python 3.8 to PATH Cancel

[Install launcher for all users (recommended)

It’s okay if the Python version you see is greater than 3.9.0 as long as
the version is not less than 3.

Make sure you select the box that says Add Python 3.x to PATH.
If you install Python without selecting this box, then you can
run the installer again and select it.

Click to install Python 3. Wait for the installation to finish,

then continue to open IDLE.

32

2.2. Windows

Open IDLE
You can open IDLE in two steps:
1. Click the Start menu and locate the Python 3.9 folder.

2. Open the folder and select IDLE (Python 3.9).

IDLE opens a Python shell in a new window. The Python shell is an
interactive environment that allows you to type in Python code and
execute it immediately. It’s a great way to get started with Python!

While you're free to use a code editor other than IDLE if you
prefer, note that some chapters, especially chapter 7, “Finding
and Fixing Code Bugs,” do contain material specific to IDLE.

The Python shell window looks like this:

{8 Python 3.8.4 Shell — O X

File Edit Shell Debug Options Window Help

Python 3.8.4 (tags/v3.8.4:dfa645a, Jul 13 2020, 16:30:28) [MSC v.1926 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license()" for more information.

535

n:3 Col:4

At the top of the window, you can see the version of Python that is
running and some information about the operating system. If you see
a version less than 3.9, then you may need to revisit the installation
instructions in the previous section.

33

2.3. macOS

The >>> symbol that you see is called a prompt. Whenever you see
this, it means that Python is waiting for you to give it some instruc-
tions.

Interactive Quiz

This chapter comes with a free online quiz to check your learn-
ing progress. You can access the quiz using your phone or com-
puter at the following web address:

realpython.com/quizzes/pybasics-setup

Now that you have Python installed, let’s get straight into writing your
first Python program! Go ahead and move on to chapter 3.

2.3 macOS

Follow these steps to install Python 3 and open IDLE on macOS.

Important

The code in this book is tested only against Python installed as
described in this section.

Be aware that if you have installed Python through some other
means, such as Anaconda Python, you may encounter problems
when running some of the code examples.

Install Python

To install the latest version of Python 3 on macOS, download and run
the official installer from the Python.org website.

Step 1: Download the Python 3 Installer

Open a web browser and navigate to the following URL:

https://www.python.org/downloads/mac-osx/

34

https://realpython.com/quizzes/pybasics-setup/
https://python.org
https://www.python.org/downloads/mac-osx/

2.3. macOS

Click Latest Python 3 Release - Python 3.x.x located beneath the
“Python Releases for Mac OS X” heading near the top of the page. As
of this writing, the latest version was Python 3.9.

Then scroll to the bottom of the page and click macOS 64-bit installer
to start the download.

Step 2: Run the Installer

Open Finder and double-click the downloaded file to run the installer.
A dialog box that looks like the following will appear:

@® & Install Python a
Welcome to the Python Installer

This package will install Python 3.8.4 for macOS 10.9 or later.
e Introduction
Python for macOS consists of the Python programming language
interpreter and its batteries-included standard library to allow easy
access to macOS features. It also includes the Python integrated
development environment, IDLE. You can also use the included pip to
download and install third-party packages from the Python Package
Index.

At the end of this install, click on Install Certificates toinstalla
set of current SSL root certificates.

Continue

Press a few times until you are asked to agree to the software
license agreement. Then click |Agree,,

You’'ll be shown a window that tells you where Python will be installed
and how much space it will take. You most likely don’t want to change
the default location, so go ahead and click to start the installa-
tion.

35

2.3. macOS

When the installer is finished copying files, click to close the
installer window.

Open IDLE

You can open IDLE in three steps:

1. Open Finder and click Applications.

2. Double-click the Python 3.9 folder.

3. Double-click the IDLE icon.

IDLE opens a Python shell in a new window. The Python shell is an

interactive environment that allows you to type in Python code and
execute it immediately. It’s a great way to get started with Python!

While you're free to use a code editor other than IDLE if you
prefer, note that some chapters, especially chapter 7, “Finding
and Fixing Code Bugs,” do contain material specific to IDLE.

The Python shell window looks like this:

[JOX] Python 3.8.4 Shell

Python 3.8.4 (v3.8.4:dfa645a65e, Jul 13 2020, 10:45:06)

[Clang 6.0 (clang-600.0.57)] on darwin
Type "help", "copyright", "credits" or "license()" for more information.

>>>

Ln:4 Col: 4

36

2.4. Ubuntu Linux

At the top of the window, you can see the version of Python that is
running and some information about the operating system. If you see
a version less than 3.9, then you may need to revisit the installation
instructions in the previous section.

The >>> symbol that you see is called a prompt. Whenever you see
this, it means that Python is waiting for you to give it some instruc-
tions.

Interactive Quiz

This chapter comes with a free online quiz to check your learn-
ing progress. You can access the quiz using your phone or com-
puter at the following web address:

realpython.com/quizzes/pybasics-setup

Now that you have Python installed, let’s get straight into writing your
first Python program! Go ahead and move on to chapter 3.

2.4 Ubuntu Linux

Follow these steps to install Python 3 and open IDLE on Ubuntu
Linux.

Important

The code in this book is tested only against Python installed as
described in this section.

Be aware that if you have installed Python through some other
means, such as Anaconda Python, you may encounter problems
when running some of the code examples.

37

https://realpython.com/quizzes/pybasics-setup/

2.4. Ubuntu Linux

Install Python

There’s a good chance that your Ubuntu distribution already has
Python installed, but it probably won’t be the latest version, and it
may be Python 2 instead of Python 3.

To find out what version(s) you have, open a terminal window and try
the following commands:

$ python --version

$ python3 --version

One or more of these commands should respond with a version, as
below:

$ python3 --version
Python 3.9.0

Your version number may vary. If the version shown is Python 2.x
or a version of Python 3 that is less than 3.9, then you want to in-
stall the latest version. How you install Python on Ubuntu depends
on which version of Ubuntu you're running. You can determine your
local Ubuntu version by running the following command:

$ 1sb_release -a
No LSB modules are available.

Distributor ID: Ubuntu

Description: Ubuntu 18.04.1 LTS
Release: 18.04
Codename: bionic

Look at the version number next to Release in the console output, and
follow the corresponding instructions below.

38

2.4. Ubuntu Linux

Ubuntu 18.04 or Greater

Ubuntu version 18.04 does not come with Python 3.9 by default, but
it is in the Universe repository. You can install it with the following
commands in the Terminal application:

$ sudo apt-get update
$ sudo apt-get install python3.9 idle-python3.9 python3-pip

Note that because the Universe repository is usually behind the
Python release schedule, you may not get the latest version of Python
3.9. However, any version of Python 3.9 will work for this book.

Ubuntu 17 and Lower

For Ubuntu versions 17 and lower, Python 3.9 is not in the Universe
repository. You need to get it from a Personal Package Archive (PPA).
To install Python from the deadsnakes PPA, run the following com-
mands in the Terminal application:

$ sudo add-apt-repository ppa:deadsnakes/ppa
$ sudo apt-get update
$ sudo apt-get install python3.9 idle-python3.9 python3-pip

You can check that the correct version of Python was installed by run-
ning python3 --version. If you see a version number less than 3.9, then
you may need to type python3.9 --version. Now you can open IDLE
and get ready to write your first Python program.

Open IDLE

You can open IDLE from the command line by typing the following:

$ idle-python3.9

39

https://launchpad.net/~deadsnakes/+archive/ubuntu/ppa

2.4. Ubuntu Linux

On some Linux installations, you can open IDLE with the following
shortened command:

$ idle3

IDLE opens a Python shell in a new window. The Python shell is an
interactive environment that allows you to type in Python code and
execute it immediately. It’s a great way to get started with Python!

While you're free to use a code editor other than IDLE if you
prefer, note that some chapters, especially chapter 7, “Finding
and Fixing Code Bugs,” do contain material specific to IDLE.

The Python shell window looks like this:

Python 3.8.4 Shell

File Edit Shell Debug Options Window Help

Python 3.8.4 (default, Jul 13 2020, 23:52:41) -
[GCC 7.5.0] on linux

Type "help", "copyright", "credits" or "license()" for more information.
>>>

Ln:4 Col: 4

At the top of the window, you can see the version of Python that is
running and some information about the operating system. If you see
a version less than 3.9, then you may need to revisit the installation
instructions in the previous section.

40

2.4. Ubuntu Linux

If you open IDLE with the id1e3 command and see a version less
than 3.9 displayed in the Python shell window, then you’ll need
to open IDLE with the idle-python3.9 command.

The >>> symbol that you see in the IDLE window is called a prompt.
Whenever you see this, it means that Python is waiting for you to give
it some instructions.

Interactive Quiz

This chapter comes with a free online quiz to check your learn-
ing progress. You can access the quiz using your phone or com-
puter at the following web address:

realpython.com/quizzes/pybasics-setup

Now that you have Python installed, let’s get straight into writing your
first Python program! Go ahead and move on to chapter 3.

41

https://realpython.com/quizzes/pybasics-setup/

Chapter 3

Your First Python Program

Now that you have the latest version of Python installed on your com-
puter, it’s time to start coding!

In this chapter, you will:

« Write your first Python program

Learn what happens when you run a program with an error
« Learn how to declare a variable and inspect its value

o Learn how to write comments

Ready to begin your Python journey? Let’s go!

42

3.1. Write a Python Program

3.1 Write a Python Program

Ifyou don’t already have IDLE open, then go ahead and open it. There
are two main windows that you’ll work with in IDLE: the interactive
window, which is the one that opens when you start IDLE, and the
editor window.

You can type code into both the interactive window and the editor win-
dow. The difference between the two windows is in how they execute
code. In this section, you'll learn how to execute Python code in both
windows.

The Interactive Window

IDLE’s interactive window contains a Python shell, which is a tex-
tual user interface used to interact with the Python language. You can
type a bit of Python code into the interactive window and press
to immediately see the results. Hence the name interactive window.

The interactive window opens automatically when you start IDLE.
You'll see the following text, with some minor differences depending
on your setup, displayed at the top of the window:

Python 3.9.0 (tags/v3.9.0:1b293b6)
[MSC v.1916 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.

>>>

This text shows the version of Python that IDLE is running. You
can also see information about your operating system and some
commands you can use to get help and view information about
Python.

The >>> symbol in the last line is called the prompt. This is where
you’ll type in your code.

43

3.1. Write a Python Program

Go ahead and type 1 + 1 at the prompt and press :

>>1 + 1
2

>>>

Python evaluates the expression, displays the result (2), then displays
another prompt. Every time you run some code in the interactive win-
dow, a new prompt appears directly below the result.

Executing Python in the interactive window can be described as a loop
with three steps:
1. Python reads the code entered at the prompt.
2. Python evaluates the code.
3. Python prints the result and waits for more input.
This loop is commonly referred to as a read-evaluate-print loop and

is abbreviated as REPL. Python programmers sometimes refer to the
Python shell as the Python REPL, or just “the REPL” for short.

Let’s try something a little more interesting than adding numbers. A
rite of passage for every programmer is writing a program that prints
the phrase “Hello, World” on the screen.

At the prompt in the interactive window, type the word print followed
by a set of parentheses with the text "Hello, World" inside:

>>> print("Hello, World")
Hello, World

44

3.1. Write a Python Program

A function is code that performs some task and can be invoked by a
name. The above code invokes, or calls, the print() function with the
text "Hello, World" as input.

The parentheses tell Python to call the print() function. They also en-
close everything that gets sent to the function as input. The quotation
marks indicate that "Hello, World" really is text and not something
else.

IDLE highlights parts of your code in different colors as you
type to make it easier for you to identify the different parts.

By default, functions are highlighted in purple and text is high-
lighted in green.

The interactive window executes a single line of code at a time. This
is useful for trying out small code examples and exploring the Python
language, but it has a major limitation: you have to enter your code
one line at a time!

Alternatively, you can save Python code in a text file and execute all of
the code in the file to run an entire program.

The Editor Window

You'll write your Python files using IDLE’s editor window. You can

open the editor window by selecting from the menu at

the top of the interactive window.

The interactive window stays open when you open the editor window.
It displays the output generated by code in the editor window, so you’ll
want to arrange the two windows so that you can see them both at the
same time.

45

3.1. Write a Python Program

In the editor window, type in the same code you used to print "Hello,
world" in the interactive window:

print("Hello, World")

IDLE highlights code typed into the editor window just like in the in-
teractive window.

When you write code in a Python file, you don’t need to include
the >>> prompt.

Before you run your program, you need to save it. Select
from the menu and save the file as hello_world.py.

On some systems, the default directory for saving files in IDLE
is the Python installation directory. Do not save your files to
this directory. Instead, save them to your desktop or to a folder
in your user’s home directory.

The .py extension indicates that a file contains Python code. In fact,
saving your file with any other extension removes the code highlight-
ing. IDLE only highlights Python code when it’s stored in a .py file.

Running Python Programs in the Editor Window

To run your program, select |Run)) Run Module| from the menu in the
editor window.

Pressing also runs a program from the editor window.

Program output always appears in the interactive window.

46

3.2. Mess Things Up

Every time you run code from a file, you’ll see something like the fol-
lowing output in the interactive window:

>>> RESTART

IDLE restarts the Python interpreter, which is the computer program
that actually executes your code, every time you run a file. This makes
sure that programs are executed the same way each time.

Opening Python Files in the Editor Window
To open an existing file in IDLE, select from the menu,

then select the file you want to open. IDLE opens every file in a new
editor window, so you can have several files open at the same time.

You can also open a file from a file manager, such as Windows
Explorer or macOS Finder. Right-click the file icon and select

Edit with IDLE|to open the file in IDLE’s editor window.

Double-clicking on a .py file from a file manager executes the pro-
gram. However, this usually runs the file with the system Python,
and the program window disappears immediately after the program
terminates—often before you can even see any output.

For now, the best way to run your Python programs is to open them
in IDLE’s editor window and run them from there.

3.2 Mess Things Up

Everybody makes mistakes—especially while programming! In case
you haven’t made any mistakes yet, let’s get a head start and mess
something up on purpose to see what happens.

Mistakes in programs are called errors. You’ll experience two main
types of errors: syntax errors and runtime errors.

47

3.2. Mess Things Up

Syntax Errors

A syntax error occurs when you write code that isn’t allowed in the
Python language.

Let’s create a syntax error by removing the last quotation mark from
the code in the hello_world.py file that you created in the last section:

print("Hello, World)

Save the file and press to run it. The code won’t run! IDLE dis-
plays an alert box with the following message:

EOL while scanning string literal.

There are two terms in this message that may be unfamiliar:
1. A string literal is text enclosed in quotation marks. "Hello,
world" is a string literal.
2. EOL stands for end of line.
So, the message tells you that Python got to the end of a line while

reading a string literal. String literals must be terminated with a quo-
tation mark before the end of a line.

IDLE highlights the line containing print ("Hello, World) in red to help
you quickly find the line of code with the syntax error. Without the
second quotation mark, everything after the first quotation mark—
including the closing parenthesis—is part of a string literal.

Runtime Errors

IDLE catches syntax errors before a program starts running. In con-
trast, runtime errors only occur while a program is running.

To generate a runtime error, remove both quotation marks in the
hello_world.py file:

48

3.2. Mess Things Up

print(Hello, World)

Did you notice how the text color changed to black when you removed
the quotation marks? IDLE no longer recognizes Hello, World as text.
What do you think will happen when you run the program? Press
to find out!

The following text displays in red in the interactive window:

Traceback (most recent call last):
File "/home/hello_world.py", line 1, in <module>
print(Hello, World)

NameError: name 'Hello' is not defined

Whenever an error occurs, Python stops executing the program and
displays several lines of text called a traceback. The traceback shows
useful information about the error.

Tracebacks are best read from the bottom up:

+ The last line of the traceback tells you the name of the error and
the error message. In this case, a NameError occurred because the
name Hello is not defined anywhere.

+ The second to last line shows you the code that produced the error.
There’s only one line of code in hello_world.py, so it’s not hard to
guess where the problem is. This information is more helpful for
larger files.

+ The third to last line tells you the name of the file and the line num-
ber so you can go to the exact spot in your code where the error
occurred.

In the next section, you’ll see how to define names for values in your
code. Before you move on, though, you can get some practice with
syntax errors and runtime errors by working on the review exercises.

49

3.3. Create a Variable

Review Exercises

You can find the solutions to these exercises and many other bonus
resources online at realpython.com/python-basics/resources

1. Write a program that IDLE won’t run because it has a syntax error.

2. Write a program that crashes only while it’s running because it has
a runtime error.

3.3 Create a Variable

In Python, variables are names that can be assigned a value and then
used to refer to that value throughout your code.

Variables are fundamental to programming for two reasons:

1. Variables keep values accessible: For example, you can as-
sign the result of some time-consuming operation to a variable so
that your program doesn’t have to perform the operation each time
you need to use the result.

2. Variables give values context: The number 28 could mean lots
of different things, such as the number of students in a class, the
number of times a user has accessed a website, and so on. Giving
the value 28 a name like num_students makes the meaning of the
value clear.

In this section, you'll learn how to use variables in your code, as well as
some of the conventions Python programmers follow when choosing
names for variables.

The Assignment Operator

An operator is a symbol, such as +, that performs an operation on
one or more values. For example, the + operator takes two numbers,
one to the left of the operator and one to the right, and adds them
together.

50

https://realpython.com/python-basics/resources/

3.3. Create a Variable

Values are assigned to variable names using a special symbol called
the assignment operator (=) . The = operator takes the value to the
right of the operator and assigns it to the name on the left.

Let’s modify the hello_world.py file from the previous section to assign
some text in a variable before printing it to the screen:

>>> greeting = "Hello, World"
>>> print(greeting)
Hello, world

On the first line, you create a variable named greeting and assign it the
value "Hello, World" using the = operator.

print(greeting) displays the output Hello, World because Python looks
for the name greeting, finds that it’s been assigned the value "Hello,
world", and replaces the variable name with its value before calling
the function.

If you hadn’t executed greeting = "Hello, World" before executing
print(greeting), then you would have seen a NameError like you did
when you tried to execute print(Hello, World) in the previous section.

Although =looks like the equals sign from mathematics, it has a
different meaning in Python. This distinction is important and
can be a source of frustration for beginner programmers.

Just remember, whenever you see the = operator, whatever is to
the right of it is being assigned to a variable on the left.

Variable names are case sensitive, so a variable named greeting is
not the same as a variable named Greeting. For instance, the following
code produces a NameError:

51

3.3. Create a Variable

>>> greeting = "Hello, World"

>>> print(Greeting)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'Greeting' is not defined

If you have trouble with an example in this book, double-check that
every character in your code—including spaces—matches the example
exactly. Computers have no common sense, so being almost correct
isn’t good enough!

Rules for Valid Variable Names

Variable names can be as long or as short as you like, but there are a
few rules that you must follow. Variable names may contain upper-
case and lowercase letters (A-Z, a—z), digits (0—9), and underscores
(1), but they cannot begin with a digit.

For example, each of the following is a valid Python variable name:

* stringl
e _alp4a

e list_of_names

The following aren’t valid variable names because they start with a
digit:

e 9lives

e 99_balloons

¢ 2beOrNot2Be

In addition to English letters and digits, Python variable names may
contain many different valid Unicode characters.

Unicode is a standard for digitally representing characters used in
most of the world’s writing systems. That means variable names can
contain letters from non-English alphabets, such as decorated letters

52

3.3. Create a Variable

like é and ii, and even Chinese, Japanese, and Arabic symbols.

However, not every system can display decorated characters, so it’s a
good idea to avoid them if you’re going to share your code with people
in different regions.

You'll learn more about Unicode in chapter 12.

You can also read about Python’s support for Unicode in the
official Python documentation.

Just because a variable name is valid doesn’t necessarily mean that
it’s a good name.

Choosing a good name for a variable can be surprisingly difficult. For-
tunately, there are some guidelines that you can follow to help you
choose better names.

Descriptive Names Are Better Than Short Names

Descriptive variable names are essential, especially for complex
programs. Writing descriptive names often requires using multiple
words. Don’t be afraid to use long variable names.

In the following example, the value 3600 is assigned to the variable s:
s = 3600

The name s is totally ambiguous. Using a full word makes it a lot easier
to understand what the code means:

seconds = 3600

53

https://docs.python.org/3/howto/unicode.html#python-s-unicode-support

3.3. Create a Variable

seconds is a better name than s because it provides more context. But
it still doesn’t convey the full meaning of the code. Is 3600 the number
of seconds it takes for a process to finish, or is it the length of a movie?
There’s no way to tell.

The following name leaves no doubt about what the code means:
seconds_per_hour = 3600

When you read the above code, there’s no question that 3600 is the
number of seconds in an hour. seconds_per_hour takes longer to type
than both the single letter s and the word seconds, but the payoff in
clarity is massive.

Although naming variables descriptively means using longer variable
names, you should avoid using excessively long names. A good rule
of thumb is to limit variable names to three or four words maximum.

Python Variable Naming Conventions

In many programming languages, it’'s common to write variable
names in mixedCase. In this system, you capitalize the first letter
of every word except the first and leave all other letters in lowercase.
For example, nunStudents and 1istOfNames are written in mixedCase.

In Python, however, it’s more common to write variable names in
lower_case_with_underscores. In this system, you leave every
letter in lowercase and separate each word with an underscore. For
instance, both num_students and 1list_of_names are written using the
lower_case_with_underscores system.

There’s no rule mandating that you write your variable names in
lower_case_with_underscores. The practice is codified, though, in a
document called PEP 8, which is widely regarded as the official style
guide for writing Python.

54

https://pep8.org

3.4. Inspect Values in the Interactive Window

PEP stands for Python Enhancement Proposal. A PEP is a de-
sign document used by the Python community to propose new
features to the language.

Following the standards outlined in PEP 8 ensures that your Python
code is readable by most Python programmers. This makes sharing
code and collaborating with other people easier for everyone involved.

Review Exercises

You can find the solutions to these exercises and many other bonus
resources online at realpython.com/python-basics/resources
1. Using the interactive window, display some text using print().

2. Using the interactive window, assign a string literal to a variable.
Then print the contents of the variable using the print() function.

3. Repeat the first two exercises using the editor window.

3.4 Inspect Values in the Interactive
Window

Type the following into IDLE’s interactive window:

>>> greeting = "Hello, World"
>>> greeting
'Hello, World'

When you press after typing greeting a second time, Python

prints the string literal assigned to greeting even though you didn’t
use the print () function. This is called variable inspection.

55

https://realpython.com/python-basics/resources/

3.4. Inspect Values in the Interactive Window

Now print the string assigned to greeting using the print() function:

>>> print(greeting)
Hello, World

Can you spot the difference between the output displayed by using
print() and the output displayed by just entering the variable name

and pressing [Enter ?

When you type the variable name greeting and press , Python
prints the value assigned to the variable as it appears in your code.
You assigned the string literal "Hello, World" to greeting, which is why
'Hello, World' is displayed with quotation marks.

String literals can be created with single or double quotation
marks in Python. At Real Python, we use double quotes wher-
ever possible, whereas IDLE output appears in single quotes by
default.

Both "Hello, world" and 'Hello, world' mean the same thing in
Python—what’s most important is that you be consistent in your
usage. You'll learn more about strings in chapter 4.

On the other hand, print () displays a more human-readable represen-
tation of the variable’s value which, for string literals, means display-
ing the text without quotation marks.

Sometimes, both printing and inspecting a variable produce the same
output:

>>> X = 2
>>> X

2

>>> print(x)
2

56

3.4. Inspect Values in the Interactive Window

Here, you assign the number 2 to x. Both using print(x) and inspecting
x display output without quotation marks because 2 is a number and
not text. In most cases, though, variable inspection gives you more
useful information than print().

Suppose you have two variables: x, which is assigned the number 2,
and y, which is assigned the string literal "2". In this case, print(x)
and print(y) both display the same thing:

>>> x = 2
>>> y = "2"
>>> print(x)
2

>>> print(y)
2

However, inspecting x and y shows the difference between each vari-
able’s value:

>>> X
2
>>> y

1o

The key takeaway here is that print () displays a readable representa-
tion of a variable’s value, while variable inspection displays the value
as it appears in the code.

Keep in mind that variable inspection works only in the interactive
window. For example, try running the following program from the
editor window:

greeting = "Hello, World"

greeting

The program executes without any errors, but it doesn’t display any
output!

57

3.5. Leave Yourself Helpful Notes

3.5 Leave Yourself Helpful Notes

Programmers sometimes read code they wrote a while ago and won-
der, “What does this do?” When you haven’t looked at code in a while,
it can be difficult to remember why you wrote it the way you did!

To help avoid this problem, you can leave comments in your code.
Comments are lines of text that don’t affect the way a program runs.
They document what code does or why the programmer made certain
decisions.

How to Write a Comment

The most common way to write a comment is to begin a new line in
your code with the # character. When you run your code, Python ig-
nores lines starting with #.

Comments that start on a new line are called block comments. You
can also write inline comments, which are comments that appear
on the same line as the code they reference. Just put a # at the end of
the line of code, followed by the text in your comment.

Here’s an example of a program with both kinds of comments:

This is a block comment.
greeting = "Hello, World"

print(greeting) # This is an inline comment.

Of course, you can still use the # symbol inside a string. For instance,
Python won’t mistake the following for the start of a comment:

>>> print("#1")
#1

In general, it’s a good idea to keep comments as short as possible, but
sometimes you need to write more than reasonably fits on a single line.
In that case, you can continue your comment on a new line that also
begins with the # symbol:

58

3.5. Leave Yourself Helpful Notes

This is my first program.

It prints the phrase "Hello, World"

The comments are longer than the code!
greeting = "Hello, World"
print(greeting)

You can also use comments to comment out code while you're test-
ing a program. Putting a # at the beginning of a line of code lets you
run your program as if that line of code didn’t exist, but it doesn’t ac-
tually delete the code.

To comment out a section of code in IDLE, highlight one or more lines
to be commented and press:

- Windows: [Alt)+ 3|
» macOS: [Ctrl]+
« Ubuntu Linux: [Ctrl]+[D |

To remove comments, highlight the commented lines and press:

- Windows: [Alt)+ 4 |
« macOS: [Ctrl |+
« Ubuntu Linux: + +(D]

Now let’s look at some common conventions for code comments.

Conventions and Pet Peeves

According to PEP 8, comments should always be written in complete
sentences with a single space between the # and the first word of the
comment:

This comment is formatted to PEP 8.

#this one isn't

For inline comments, PEP 8 recommends at least two spaces between

59

https://pep8.org/#comments

3.6. Summary and Additional Resources

the code and the # symbol:

phrase = "Hello, World" # This comment is PEP 8 compliant.

print(phrase)# This comment isn't.

PEP 8 recommends that comments be used sparingly. A major pet
peeve among programmers is comments that describe what is already
obvious from reading the code.

For example, the comment in the following code is unnecessary:

Print "Hello, World"
print("Hello, World")

The comment is unnecessary because the code itself explicitly de-
scribes what’s happening. Comments are best used to clarify code
that may be difficult to understand or to explain why something is
coded a certain way.

3.6 Summary and Additional Resources

In this chapter, you wrote and executed your first Python program!
You wrote a small program that displays the text "Hello, world" using
the print() function.

Then you learned about syntax errors, which occur before IDLE ex-
ecutes a program that contains invalid Python code, and runtime
errors, which only occur while a program is running.

You saw how to assign values to variables using the assignment
operator (=) and how to inspect variables in the interactive window.

Finally, you learned how to write helpful comments in your code for
when you or someone else looks at it in the future.

60

3.6. Summary and Additional Resources

Interactive Quiz

This chapter comes with a free online quiz to check your learn-
ing progress. You can access the quiz using your phone or com-
puter at the following web address:

realpython.com/quizzes/pybasics-first-program

Additional Resources

To learn more, check out the following resources:

 “11 Beginner Tips for Learning Python Programming”

« “Writing Comments in Python (Guide)”

For links and additional resources to further deepen your Python
skills, visit realpython.com/python-basics/resources

61

https://realpython.com/quizzes/pybasics-first-program/
https://realpython.com/python-beginner-tips/
https://realpython.com/python-comments-guide/
https://realpython.com/python-basics/resources/

Chapter 4

Strings and String Methods

Many programmers, regardless of their specialty, deal with text on a
daily basis. For example, web developers work with text input from
web forms. Data scientists process text to extract data and perform
tasks like sentiment analysis, which can help identify and classify
opinions in a body of text.

Collections of text in Python are called strings. Special functions
called string methods are used to manipulate strings. There are
string methods for changing a string from lowercase to uppercase, re-
moving whitespace from the beginning or end of a string, replacing
parts of a string with different text, and much more.

In this chapter, you’ll learn how to:

« Manipulate strings with string methods
« Work with user input
+ Deal with strings of numbers

+ Format strings for printing

Let’s get started!

62

4.1. What Is a String?

4.1 What Is a String?

In chapter 3, you created the string "Hello, World" and printed it in
IDLE’s interactive window using print(). In this section, you’ll get a
deeper look into exactly what strings are and the various ways you can
create them in Python.

The String Data Type

Strings are one of the fundamental Python data types. The term data
type refers to what kind of data a value represents. Strings are used
to represent text.

There are several other data types built into Python. For exam-
ple, you'll learn about numerical data types in chapter 5 and
Boolean data types in chapter 8.

We say that strings are a fundamental data type because they can’t
be broken down into smaller values of a different type. Not all data
types are fundamental. You’'ll learn about compound data types, also
known as data structures, in chapter 9.

The string data type has a special abbreviated name in Python: str.
You can see this by using type(), which is a function used to determine
the data type of a given value.

Type the following into IDLE’s interactive window:

>>> type("Hello, World")

<class 'str'>

The output <class 'str'> indicates that the value "Hello, world" is an
instance of the str data type. That is, "Hello, world" is a string.

63

4.1. What Is a String?

For now, you can think of the word class as a synonym for data
type, although it actually refers to something more specific.
You'll see just what a class is in chapter 10.

type() also works for values that have been assigned to a variable:

>>> phrase = "Hello, World"
>>> type(phrase)

<class 'str'>
Strings have three important properties:

1. Strings contain individual letters or symbols called characters.

2. Strings have a length, defined as the number of characters the
string contains.

3. Characters in a string appear in a sequence, which means that
each character has a numbered position in the string.

Let’s take a closer look at how strings are created.

String Literals

As you've already seen, you can create a string by surrounding some
text with quotation marks:

stringl = 'Hello, World'
"1234"

string?

You can use either single quotes (string1) or double quotes (string2)
to create a string as long as you use the same type at the beginning
and end of the string.

Whenever you create a string by surrounding text with quotation
marks, the string is called a string literal. The name indicates that
the string is literally written out in your code. All the strings you've
seen thus far are string literals.

64

4.1. What Is a String?

Not every string is a string literal. Sometimes strings are input
by a user or read from a file. Since they’re not typed out with
quotation marks in your code, they’re not string literals.

The quotes surrounding a string are called delimiters because they
tell Python where a string begins and where it ends. When one type of
quotes is used as the delimiter, the other type can be used inside the
string:

string3 = "We're #1!"
string4 = 'I said, "Put it over by the llama."'

After Python reads the first delimiter, it considers all the characters
after it part of the string until it reaches a second matching delimiter.
This is why you can use a single quote in a string delimited by double
quotes, and vice versa.

If you try to use double quotes inside a string delimited by double
quotes, you'll get an error:

>>> text = "She said, "What time is it?""
File "<stdin>", line 1
text = "She said, "What time is it?""

A

SyntaxError: invalid syntax

Python throws a syntaxError because it thinks the string ends after the
second ", and it doesn’t know how to interpret the rest of the line. If
you need to include a quotation mark that matches the delimiter in-
side a string, then you can escape the character using a backslash:

>>> text = "She said, \"What time is it?\""
>>> print(text)

She said, "What time is it?"

65

4.1. What Is a String?

When you work on a project, it’s a good idea to use only single
quotes or only double quotes to delimit every string.

Keep in mind that there really isn’t a right or wrong choice! The
goal is to be consistent because consistency helps make your
code easier to read and understand.

Strings can contain any valid Unicode character. For example, the
string "we're #1!" contains the pound sign (#) and "1234" contains num-
bers. "xPythenx" is also a valid Python string!

Determine the Length of a String

The number of characters contained in a string, including spaces, is
called the length of the string. For example, the string "abc" has a
length of 3, and the string "Don't Panic" has a length of 11.

Python has a built-in 1en() function that you can use to determine the
length of a string. To see how it works, type the following into IDLE’s
interactive window:

>>> len("abc")
3

You can also use 1en() to get the length of a string that’s assigned to a
variable:

>>> letters = "abc
>>> len(letters)

3

First, you assign the string "abc" to the variable letters. Then you use
len() to get the length of letters, which is 3.

66

4.1. What Is a String?

Multiline Strings

The PEP 8 style guide recommends that each line of Python code con-
tain no more than seventy-nine characters—including spaces.

PEP 8’s seventy-nine-character line length is a recommenda-
tion, not a rule. Some Python programmers prefer a slightly
longer line length.

In this book, we’ll strictly follow PEP 8’s recommended line
length.

Whether you follow PEP 8 or choose a longer line length, sometimes
you’ll need to create string literals with more characters than your cho-
sen limit.

To deal with long strings, you can break them up across multiple lines
into multiline strings. For example, suppose you need to fit the
following text into a string literal:

This planet has—or rather had—a problem, which was
this: most of the people living on it were unhappy for
pretty much of the time. Many solutions were suggested
for this problem, but most of these were largely con-
cerned with the movements of small green pieces of
paper, which is odd because on the whole it wasn’t the
small green pieces of paper that were unhappy.

— Douglas Adams, The Hitchhiker’s Guide to the Galaxy

This paragraph contains far more than seventy-nine characters, so
any line of code containing the paragraph as a string literal violates
PEP 8. So, what do you do?

There are a couple of ways to tackle this. One way is to break the string
up across multiple lines and put a backslash (\) at the end of all but the

67

https://pep8.org/#maximum-line-length

4.1. What Is a String?

last line. To be PEP 8 compliant, the total length of the line, including
the backslashes, must be seventy-nine characters or fewer.

Here’s how you could write the paragraph as a multiline string using
the backslash method:

paragraph = "This planet has—or rather had—a problem, which was \
this: most of the people living on it were unhappy for pretty much \
of the time. Many solutions were suggested for this problem, but \
most of these were largely concerned with the movements of small \
green pieces of paper, which is odd because on the whole it wasn't \

the small green pieces of paper that were unhappy."

Notice that you don’t have to close each line with a quotation mark.
Normally, Python would get to the end of the first line and complain
that you didn’t close the string with a matching double quote. With a
backslash at the end, you can keep writing the same string on the next
line.

When you print() a multiline string that’s broken up by backslashes,
the output is displayed on a single line:

>>> long_string = "This multiline string is \
displayed on one line"
>>> print(long_string)

This multiline string is displayed on one line

You can also create multiline strings using triple quotes (""" or ' ') as
delimiters. Here’s how to write a long paragraph using this approach:

paragraph = """This planet has—or rather had-a problem, which was
this: most of the people living on it were unhappy for pretty much
of the time. Many solutions were suggested for this problem, but
most of these were largely concerned with the movements of small
green pieces of paper, which is odd because on the whole it wasn't

nnn

the small green pieces of paper that were unhappy.

68

4.2. Concatenation, Indexing, and Slicing

Triple-quoted strings preserve whitespace, including newlines. This
means that running print (paragraph) would display the string on mul-
tiple lines, just as it appears in the string literal. This may or may not
be what you want, so you'll need to think about the desired output
before you choose how to write a multiline string.

To see how whitespace is preserved in a triple-quoted string, type the
following into IDLE’s interactive window:

>>> print("""An example of a
string that spans across multiple lines
and also preserves whitespace.""")
An example of a
string that spans across multiple lines

and also preserves whitespace.

Notice how the second and third lines in the output are indented in
exactly the same way as the string literal.

Review Exercises

You can find the solutions to these exercises and many other bonus
resources online at realpython.com/python-basics/resources

1. Print a string that uses double quotation marks inside the string.
2. Print a string that uses an apostrophe inside the string.
3. Print a string that spans multiple lines with whitespace preserved.

4. Print a string that is coded on multiple lines but gets printed on a
single line.

4.2 Concatenation, Indexing, and
Slicing

Now that you know what a string is and how to declare string literals
in your code, let’s explore some of the things you can do with strings.

69

https://realpython.com/python-basics/resources/

4.2. Concatenation, Indexing, and Slicing

In this section, you’'ll learn about three basic string operations:

1. Concatenation, which joins two strings together
2. Indexing, which gets a single character from a string

3. Slicing, which gets several characters from a string at once

Let’s dive in!

String Concatenation

You can combine, or concatenate, two strings using the + operator:

>>> stringl = "abra"

>>> string2 = "cadabra"

>>> magic_string = stringl + string2
>>> magic_string

'abracadabra’

In this example, the string concatenation occurs on the third line. You
concatenate stringl and string2 using +, and then you assign the re-
sult to the variable magic_string. Notice that the two strings are joined
without any whitespace between them.

You can use string concatenation to join two related strings, such as
joining a first name and a last name into a full name:

>>> first_name = "Arthur"
>>> last_name = "Dent"

non

>>> full_name = first_name + + last_name
>>> full_name

'Arthur Dent'

Here, you use string concatenation twice on the same line. First, you
concatenate first_name with " " to ensure a space appears after the
first name in the final string. This produces the string "Arthur ", which
you then concatenate with last_name to produce the full name "Arthur
Dent".

70

4.2. Concatenation, Indexing, and Slicing

String Indexing

Each character in a string has a numbered position called an index.
You can access the character at the nth position by putting the number
n between two square brackets ([1) immediately after the string:

>>> flavor = "fig pie"
>>> flavor[1]

-]

1
flavor[1] returns the character at position 1 in "fig pie", which is i.
Wait. Isn’t f the first character of "fig pie"?

In Python—and in most other programming languages—counting al-
ways starts at zero. To get the character at the beginning of a string,
you need to access the character at position o:

>>> flavor[0]
'f'

Important

Forgetting that counting starts with zero and trying to access
the first character in a string with the index 1 results in an off-
by-one error.

Off-by-one errors are a common source of frustration for begin-
ning and experienced programmers alike!

The following figure shows the index for each character of the string
"fig pie":

71

4.2. Concatenation, Indexing, and Slicing

If you try to access an index beyond the end of a string, then Python
raises an IndexError:

>>> flavor[9]
Traceback (most recent call last):
File "<pyshell#4>", line 1, in <module>
flavor[9]

IndexError: string index out of range

The largest index in a string is always one less than the string’s length.
Since "fig pie" has a length of seven, the largest index allowed is 6.

Strings also support negative indices:

>>> flavor[-1]

@

The last character in a string has index -1, which for "fig pie" is the
letter e. The second to last character i has index -2, and so on.

The following figure shows the negative index for each character in
the string "fig pie":

Just like with positive indices, Python raises an IndexError if you try to
access a negative index less than the index of the first character in the
string;:

>>> flavor[-10]
Traceback (most recent call last):
File "<pyshell#5>", line 1, in <module>
flavor[-10]

IndexError: string index out of range

Negative indices may not seem useful at first, but sometimes they’re
a better choice than a positive index.

72

4.2. Concatenation, Indexing, and Slicing

For example, suppose a string input by a user is assigned to the vari-
able user_input. If you need to get the last character of the string, how
do you know what index to use?

One way to get the last character of a string is to calculate the final
index using 1en():

final_index = len(user_input) - 1

last_character = user_input[final_index]

Getting the final character with the index -1 takes less typing and
doesn’t require an intermediate step to calculate the final index:

last_character = user_input[-1]

String Slicing

Suppose you need a string containing just the first three letters of the
string "fig pie". You could access each character by index and con-
catenate them like this:

>>> first_three_letters = flavor[0] + flavor[1l] + flavor[2]
>>> first_three_letters

rfl-gr

If you need more than just the first few letters of a string, then get-
ting each character individually and concatenating them together is
clumsy and long-winded. Fortunately, Python provides a way to do
this with much less typing.

You can extract a portion of a string, called a substring, by inserting
a colon between two index numbers set inside square brackets like
this:

>>> flavor = "fig pie"
>>> flavor[0:3]
lfigl

73

4.2. Concatenation, Indexing, and Slicing

flavor[0:3] returns the first three characters of the string assigned to
flavor, starting with the character at index 0 and going up to but not in-
cluding the character at index 3. The [0:3] part of flavor[0:3] is called
a slice. In this case, it returns a slice of "fig pie". Yum!

String slices can be confusing because the substring returned by
the slice includes the character whose index is the first number but
doesn’t include the character whose index is the second number.

To remember how slicing works, you can think of a string as a se-
quence of square slots. The left and right boundaries of each slot are
numbered sequentially from zero up to the length of the string, and
each slot is filled with a character in the string.

Here’s what this looks like for the string "fig pie":

So, for "fig pie", the slice [0:3] returns the string "fig", and the slice
[3:7] returns the string " pie".

If you omit the first index in a slice, then Python assumes you want to
start at index o:

>>> flavor[:3]

"Fig!

The slice [:3] is equivalent to the slice [0:3], so flavor[:3] returns the
first three characters in the string "fig pie".

Similarly, if you omit the second index in the slice, then Python as-
sumes you want to return the substring that begins with the character

74

4.2. Concatenation, Indexing, and Slicing

whose index is the first number in the slice and ends with the last char-
acter in the string:

>>> flavor[3:]

r ple T
For "fig pie", the slice [3:] is equivalent to the slice [3:7]. Since the
character at index 3 is a space, flavor[3:9] returns the substring that
starts with the space and ends with the last letter: " pie".

If you omit both the first and second numbers in a slice, you get a
string that starts with the character at index 0 and ends with the last
character. In other words, omitting both numbers in a slice returns
the entire string:

>>> flavor([:]

'fig pie'

It’s important to note that, unlike with string indexing, Python won’t
raise an IndexError when you try to slice between boundaries that fall
outside the beginning or ending boundaries of a string;:

>>> flavor[:14]
'fig pie'
>>> flavor[13:15]

r

In this example, the first line gets the slice from the beginning of the
string up to but not including the fourteenth character. The string
assigned to flavor has a length of seven, so you might expect Python
to throw an error. Instead, it ignores any nonexistent indices and re-
turns the entire string "fig pie".

The third line shows what happens when you try to get a slice in which
the entire range is out of bounds. flavor[13:15] attempts to get the
thirteenth and fourteenth characters, which don’t exist. Instead of
raising an error, Python returns the empty string ().

75

4.2. Concatenation, Indexing, and Slicing

The empty string is called empty because it doesn’t contain any
characters. You can create it by writing two quotation marks
with nothing between them:

nn

empty_string =

A string with anything in it—even a space—is not empty. All the
following strings are non-empty:

non_empty_stringl

non_empty_string2 = "

non_empty_string3 =

Even though these strings don’t contain any visible characters,
they are non-empty because they do contain spaces.

You can use negative numbers in slices. The rules for slices with nega-
tive numbers are exactly the same as the rules for slices with positive
numbers. It helps to visualize the string as slots with the boundaries
labeled with negative numbers:

Just like before, the slice [x:y] returns the substring starting at index
x and going up to but not including y. For instance, the slice [-7:-4]
returns the first three letters of the string "fig pie":

>>> flavor[-7:-4]

rfigl

Notice, however, that the rightmost boundary of the string does not
have a negative index. The logical choice for that boundary would
seem to be the number o, but that doesn’t work.

76

4.2. Concatenation, Indexing, and Slicing

Instead of returning the entire string, [-7:0] returns the empty string:

>>> flavor[-7:0]

r

This happens because the second number in a slice must correspond
to a boundary that is to the right of the boundary corresponding to the
first number, but both -7 and o correspond to the leftmost boundary
in the figure.

If you need to include the final character of a string in your slice, then
you can omit the second number:

>>> flavor[-7:]

'fig pie'

Of course, using flavor[-7:] to get the entire string is a bit odd consid-
ering that you can use the variable flavor without the slice to get the
same result!

Slices with negative indices are useful, though, for getting the last few
characters in a string. For example, flavor[-3:] iS "pie".

Strings Are Immutable

To wrap this section up, let’s discuss an important property of string
objects. Strings are immutable, which means that you can’t change
them once you've created them. For instance, see what happens when
you try to assign a new letter to one particular character of a string:

>>> word = "goal"”
>>> word[0] = "f"
Traceback (most recent call last):
File "<pyshell#16>", line 1, in <module>
word[0] = "f"

TypeError: 'str' object does not support item assignment

77

4.2. Concatenation, Indexing, and Slicing

Python throws a TypeError and tells you that str objects don’t support
item assignment.

If you want to alter a string, then you must create an entirely new
string. To change the string "goal" to the string "foal", you can use a
string slice to concatenate the letter "f" with everything but the first
letter of the word "goal":

>>> word = "goal"

>>> word = "f" + word[1l:]
>>> word

'foal'

First, you assign the string "goal" to the variable word. Then you con-
catenate the slice word[1:1, which is the string "oal", with the letter "£"
to get the string "foal". If you're getting a different result here, then
make sure you're including the colon character (:) as part of the string
slice.

Review Exercises

You can find the solutions to these exercises and many other bonus
resources online at realpython.com/python-basics/resources
1. Create a string and print its length using 1en().

2. Create two strings, concatenate them, and print the resulting
string.

3. Create two strings, use concatenation to add a space between them,
and print the result.

4. Print the string "zing" by using slice notation to specify the correct
range of characters in the string "bazinga".

78

https://realpython.com/python-basics/resources/

4.3. Manipulate Strings With Methods

4.3 Manipulate Strings With Methods

Strings come bundled with special functions called string methods
that you can use to work with and manipulate strings. There are nu-
merous string methods available, but we’ll focus on some of the most
commonly used ones.

In this section, you'll learn how to:

+ Convert a string to uppercase or lowercase
« Remove whitespace from a string

 Determine if a string begins or ends with certain characters

Let’s go!

Converting String Case

To convert a string to all lowercase letters, you use the string’s . 1ower()
method. This is done by tacking .1lower() onto the end of the string
itself:

>>> "Jean-Luc Picard".lower()

'jean-luc picard'

The dot (.) tells Python that what follows is the name of a method—
the lower () method in this case.

We'll refer to string methods with a dot (.) at the beginning of
their names. For example, .1lower() is written with a leading dot
instead of as lower().

This makes it easier to differentiate functions that are string
methods from built-in functions like print () and type().

79

4.3. Manipulate Strings With Methods

String methods don’t just work on string literals. You can also use
.lower() on a string assigned to a variable:

>>> name = "Jean-Luc Picard"
>>> name.lower ()

'jean-luc picard'

The opposite of .1ower() is .upper(), which converts every character in
a string to uppercase:

>>> name.upper ()
'"JEAN-LUC PICARD'

Compare the .upper() and .lower() string methods to the 1en() func-
tion you saw in the last section. Aside from the different results of
these functions, the important distinction here is how they’re used.

len() is a stand-alone function. If you want to determine the length of
the name string, then you call the 1en() function directly:

>>> len(name)

15

On the other hand, .upper() and .1ower() must be used in conjunction
with a string. They do not exist independently.

Removing Whitespace From a String

Whitespace is any character that is printed as blank space. This in-
cludes things like spaces and line feeds, which are special characters
that move output to a new line.

Sometimes you need to remove whitespace from the beginning or end
of a string. This is especially useful when working with strings that
come from user input, which may include extra whitespace characters
by accident.

8o

4.3. Manipulate Strings With Methods

There are three string methods that you can use to remove whitespace
from a string:

1. .rstrip()
2. .1Istrip(Q)
3. .strip()

.rstrip() removes whitespace from the right side of a string:

>>> name = "Jean-Luc Picard
>>> name

'Jean-Luc Picard
>>> name.rstrip()

'"Jean-Luc Picard'

In this example, the string "Jean-Luc Picard " has five trailing spaces.
You use .rstrip() to remove trailing spaces from the right-hand side
of the string. This returns the new string "Jean-Luc Picard", which no
longer has the spaces at the end.

.1strip() works just like .rstrip(), except that it removes whitespace
from the left-hand side of the string:

>>> name = Jean-Luc Picard"
>>> name

! Jean-Luc Picard'
>>> name.lstrip()

'"Jean-Luc Picard'

To remove whitespace from both the left and the right sides of the
string at the same time, use .strip(:

>>> name = Jean-Luc Picard

>>> name
! Jean-Luc Picard !
>>> name.strip()

'"Jean-Luc Picard'

81

4.3. Manipulate Strings With Methods

It’s important to note that none of .rstrip(), .1strip(), Or .strip() re-
moves whitespace from the middle of the string. In each of the previ-
ous examples, the space between "Jean-Luc" and "Picard" is preserved.

Determine If a String Starts or Ends With a
Particular String

When you work with text, sometimes you need to determine if a given
string starts with or ends with certain characters. You can use two
string methods to solve this problem: .startswith() and .endswith().

Let’slook at an example. Consider the string "Enterprise". Here’s how
you use .startswith() to determine if the string starts with the letters
eandn:

>>> starship = "Enterprise"
>>> starship.startswith("en")

False

You tell .startswith() which characters to search for by providing a
string containing those characters. So, to determine if "Enterprise”
starts with the letters e and n, you call .startswith("en"). This returns
False. Why do you think that is?

If you guessed that .startswith("en") returns False because "En-
terprise" starts with a capital g, then you’re absolutely right! The
.startswith() method is case sensitive. To get .startswith() to
return True, you need to provide it with the string "En":

>>> starship.startswith("En")

True

You can use .endswith() to determine if a string ends with certain char-
acters:

>>> starship.endswith(''rise™)

True

82

4.3. Manipulate Strings With Methods

Just like .startswith(), the .endswith() method is case sensitive:

>>> starship.endswith("risE")

False

The True and False values are not strings. They are a special kind
of data type called a Boolean value. You’ll learn more about
Boolean values in chapter 8.

String Methods and Immutability

Recall from the previous section that strings are immutable—they
can’t be changed once they've been created. Most string methods
that alter a string, like .upper() and .1ower(), actually return copies of
the original string with the appropriate modifications.

If you aren’t careful, this can introduce subtle bugs into your program.
Try this out in IDLE’s interactive window:

>>> name = "Picard"
>>> name.upper ()
'"PICARD'

>>> name

'Picard’

When you call name.upper(), nothing about name actually changes. If
you need to keep the result, then you need to assign it to a variable:

>>> name = "Picard"

>>> name = name.upper()
>>> name

'"PICARD'

name.upper() returns a new string "PICARD", which is reassigned to the
name variable. This overrides the original string "picard" that you first
assigned to name.

83

4.3. Manipulate Strings With Methods

Use IDLE to Discover Additional String Methods

Strings have lots of methods associated with them, and the methods
introduced in this section barely scratch the surface. IDLE can help
you find new string methods. To see how, first assign a string literal
to a variable in the interactive window:

>>> starship = "Enterprise"

Next, type starship followed by a period, but do not hit Enter|. You
should see the following in the interactive window:

>>> starship.

Now wait for a couple of seconds. IDLE displays a list of every string
method, which you can scroll through using the arrow keys.

A related shortcut in IDLE is the ability to use to automatically
fill in text without having to type long names. For instance, if you
type only starship.uand hit , then IDLE automatically fills in star-
ship.upper because only one method that begins with a u belongs to

starship.

This even works with variable names. Try typing just the first few let-
ters of starship and pressing . If you haven’t defined any other
names that share those first letters, then IDLE completes the name
starship for you.

Review Exercises

You can find the solutions to these exercises and many other bonus
resources online at realpython.com/python-basics/resources

1. Write a program that converts the following strings to lowercase:
"Animals", "Badger", "Honey Bee", "Honey Badger". Print each lower-
case string on a separate line.

2. Repeat exercise 1, but convert each string to uppercase instead of
lowercase.

84

https://realpython.com/python-basics/resources/

4.4. Interact With User Input

3. Write a program that removes whitespace from the following
strings, then print out the strings with the whitespace removed:

stringl = " Filet Mignon"
string2 = "Brisket

string3 = " Cheeseburger

4. Write a program that prints out the result of .startswith("be") on
each of the following strings:

stringl = "Becomes"
string2 = "becomes"
string3 = "BEAR"
string4 = " bEautiful”

5. Using the same four strings from exercise 4, write a program that
uses string methods to alter each string so that .startswith("be")
returns True for all of them.

4.4 Interact With User Input

Now that you've seen how to work with string methods, let’s make
things interactive!

In this section, you’ll learn how to get some input from a user with
input (). You'll write a program that asks a user to input some text and
then displays that text back to them in uppercase.

Enter the following into IDLE’s interactive window:

>>> input()
When you press [Enter], it looks like nothing happens. The cursor

moves to a new line, but a new >>> doesn’t appear. Python is waiting
for you to enter something!

85

4.4. Interact With User Input

Go ahead and type some text and press [Enter}:

>>> input()
Hello there!
'Hello there!'

>>>

The text you entered is repeated on a new line with single quotes.
That’s because input () returns as a string any text entered by the user.

To make input () a bit more user-friendly, you can give it a prompt to
display to the user. The prompt is just a string that you put between
the parentheses of input(). It can be anything you want: a word, a
symbol, a phrase—anything that is a valid Python string.

input () displays the prompt and waits for the user to type something.
When the user hits [Enter), input () returns their input as a string that
can be assigned to a variable and used to do something in your pro-
gram.

To see how input () works, type the following code into IDLE'’s editor
window:

prompt = "Hey, what's up? "
user_input = input(prompt)

print("You said: " + user_input)

Press to run the program. The text Hey, what's up? displays in the
interactive window with a blinking cursor.

The single space at the end of the string "Hey, what's up? " makes sure
that when the user starts to type, the text is separated from the prompt
with a space. When the user types a response and presses [Enter), their
response is assigned to the user_input variable.

86

4.4. Interact With User Input

Here’s a sample run of the program:

Hey, what's up? Mind your own business.

You said: Mind your own business.

Once you have input from a user, you can do something with it. For
example, the following program takes user input, converts it to upper-
case with .upper(), and prints the result:

response = input("What should I shout? ")
shouted_response = response.upper()

print("Well, if you insist..." + shouted_response)

Try typing this program into IDLE’s editor window and running it.
What else can you think of to do with the input?

Review Exercises

You can find the solutions to these exercises and many other bonus
resources online at realpython.com/python-basics/resources

1. Write a program that takes input from the user and displays that
input back.

2. Write a program that takes input from the user and displays the
input in lowercase.

3. Write a program that takes input from the user and displays the
number of characters in the input.

87

https://realpython.com/python-basics/resources/

4.5. Challenge: Pick Apart Your User’s Input

4.5 Challenge: Pick Apart Your User’s
Input

Write a program named first_letter.py that prompts the user for in-
put with the string "Tell me your password:". The program should then
determine the first letter of the user’s input, convert that letter to up-
percase, and display it back.

For example, if the user input is "no", then the program should display
the following output:

The first letter you entered was: N

For now, it’s okay if your program crashes when the user enters noth-
ing as input—that is, when they just hit instead of typing some-
thing. You’'ll learn a couple of ways to deal with this situation in an
upcoming chapter.

You can find the solutions to this code challenge and many other bonus
resources online at realpython.com/python-basics/resources

4.6 Working With Strings and Numbers

When you get user input using input (), the result is always a string.
There are many other situations in which input is given to a program
as a string. Sometimes those strings contain numbers that need to be
fed into calculations.

In this section, you’ll learn how to deal with strings of numbers. You’ll
see how arithmetic operations work on strings and how they often lead
to surprising results. You’ll also learn how to convert between strings
and number types.

Using Strings With Arithmetic Operators

You've seen that string objects can hold many types of characters, in-
cluding numbers. However, don’t confuse numerals in a string with

88

https://realpython.com/python-basics/resources/

4.6. Working With Strings and Numbers

actual numbers. For instance, try this bit of code out in IDLE’s inter-
active window:

>>> num = "2"
>>> num + num

1o

The + operator concatenates two strings together, which is why the
result of "2" + 2" is "22" and not "4".

You can multiply strings by a number as long as that number is an
integer or whole number. Type the following into the interactive win-
dow:

>>> num = "12"
>>> num * 3

'121212°'

num * 3 concatenates three instances of the string "12" and returns the
string "121212".

Compare this operation to arithmetic with numbers. When you mul-
tiply the number 12 by the number 3, the result is the same as adding
three 12s together. The same is true for a string. That is, "12" * 3 can
be interpreted as "12" + "12" + "12". In general, multiplying a string
by an integer n concatenates n copies of that string.

You can move the number on the right-hand side of the expression num
* 3 to the left, and the result is unchanged:

>>> 3 % num
'121212"

What do you think happens if you use the * operator between two
strings?

89

4.6. Working With Strings and Numbers

Type "12" * "3" in the interactive window and press [Enter}:

>>> "12" % "3"
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: can't multiply sequence by non-int of type 'str'
Python raises a TypeError and tells you that you can’t multiply a se-
quence by a non-integer.

A sequence is any Python object that supports accessing ele-
ments by index. Strings are sequences. You’ll learn about other
sequence types in chapter 9.

When you use the * operator with a string, Python always expects an
integer on the other side of the operator.

What do you think happens when you try to add a string and a num-
ber?

>>> "3" + 3
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: can only concatenate str (not "int") to str

Python throws a TypeError because it expects the objects on both sides
of the + operator to be of the same type.

If an object on either side of + is a string, then Python tries to perform
string concatenation. It will only perform addition if both objects are
numbers. So, to add 3" + 3 and get 6, you must first convert the string
"3" to a number.

90

4.6. Working With Strings and Numbers

Converting Strings to Numbers

The TypeError examples in the previous section highlight a common
problem when applying user input to an operation that requires a
number and not a string: type mismatches.

Let’s look at an example. Save and run the following program:

num = input("Enter a number to be doubled: ")
doubled_num = num * 2

print (doubled_num)

If you entered the number 2 at the prompt, then you would expect the
output to be 4. But in this case, you would get 22. Remember, input ()
always returns a string, so if you input 2, then num is assigned the string
2", not the integer 2. Therefore, the expression num * 2 returns the
string "2" concatenated with itself, which is "22".

To perform arithmetic on numbers contained in a string, you must
first convert them from a string type to a number type. There are two
functions that you can use to do this: int() and float().

int() stands for integer and converts objects into whole numbers,
whereas float () stands for floating-point number and converts ob-
jects into numbers with decimal points. Here’s what using each one
looks like in the interactive window:

>>> int("12")
12

>>> float("12")
12.0

Notice how float() adds a decimal point to the number. Floating-
point numbers always have at least one decimal place of precision. For
this reason, you can’t change a string that looks like a floating-point
number into an integer because you would lose everything after the
decimal point.

o1

4.6. Working With Strings and Numbers

Try converting the string "12.0" to an integer:

>>> int("12.0")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: invalid literal for int() with base 10: '12.0'

Even though the extra o after the decimal place doesn’t add any value
to the number, Python won’t change 12.0 into 12 because it would re-
sult in a loss of precision.

Let’s revisit the program from the beginning of this section and see
how to fix it. Here’s the code again:

num = input("Enter a number to be doubled: ")
doubled_num = num * 2

print (doubled_num)

The issue is on the line doubled_num = num * 2 because num is a string
and 2 is an integer.

You can fix the problem by passing num to either int() or float(). Since
the prompts asks the user to input a number, and not specifically an
integer, let’s convert num to a floating-point number:

num = input("Enter a number to be doubled: ")
doubled_num = float(num) * 2
print (doubled_num)

Now when you run this program and input 2, you get 4.0 as expected.
Try it out!

Converting Numbers to Strings

Sometimes you need to convert a number to a string. You might do
this, for example, if you need to build a string from some preexisting
variables that are assigned to numeric values.

02

4.6. Working With Strings and Numbers

As you've already seen, concatenating a number with a string pro-
duces a TypeError:

>>> num_pancakes = 10
>>> "I am going to eat " + num_pancakes + " pancakes."
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: can only concatenate str (not "int") to str

Since num_pancakes is a number, Python can’t concatenate it with the
string "I'm going to eat". To build the string, you need to convert
num_pancakes to a string using str():

>>> num_pancakes = 10

n "

>>> "I am going to eat + str(num_pancakes) + " pancakes."

[

'T am going to eat 10 pancakes.

You can also call str() on a number literal:

>>> "I am going to eat " + str(10) + " pancakes."

[

'T am going to eat 10 pancakes.

str() can even handle arithmetic expressions:

10

>>> pancakes_eaten = 5

>>> total_pancakes

>>> "Only " + str(total_pancakes - pancakes_eaten) + " pancakes left."

'Only 5 pancakes left.'

In the next section, you'll learn how to format strings neatly to display
values in a nice, readable manner. Before you move on, though, check
your understanding with the following review exercises.

93

4.7. Streamline Your Print Statements

Review Exercises

You can find the solutions to these exercises and many other bonus
resources online at realpython.com/python-basics/resources

1. Create a string containing an integer, then convert that string into
an actual integer object using int(). Test that your new object is
a number by multiplying it by another number and displaying the
result.

2. Repeat the previous exercise, but use a floating-point number and
float().

3. Create a string object and an integer object, then display them side
by side with a single print statement using str().

4. Write a program that uses input () twice to get two numbers from
the user, multiplies the numbers together, and displays the result.
If the user enters 2 and 4, then your program should print the
following text:

The product of 2 and 4 is 8.0.

4.7 Streamline Your Print Statements

Suppose you have a string, name = "Zaphod", and two integers, heads
= 2 and arms = 3. You want to display them in the string "zaphod has
2 heads and 3 arms". This is called string interpolation, which is
just a fancy way of saying that you want to insert some variables into
specific locations in a string.

One way to do this is with string concatenation:

>>> name + " has " + str(heads) + " heads and " + str(arms) + " arms"

'Zaphod has 2 heads and 3 arms'

This code isn’t the prettiest, and keeping track of what goes inside or
outside the quotes can be tough. Fortunately, there’s another way of
interpolating strings: formatted string literals, more commonly

94

https://realpython.com/python-basics/resources/
https://docs.python.org/3/reference/lexical_analysis.html#formatted-string-literals

4.7. Streamline Your Print Statements

known as f-strings.

The easiest way to understand f-strings is to see them in action. Here’s
what the above string looks like when written as an f-string:

>>> f"{name} has {heads} heads and {arms} arms"

'Zaphod has 2 heads and 3 arms'

There are two important things to notice about the above example:

1. The string literal starts with the letter £ before the opening quota-
tion mark.

2. Variable names surrounded by curly braces ({}) are replaced by
their corresponding values without using str().

You can also insert Python expressions between the curly braces. The
expressions are replaced with their result in the string:

>>>n = 3
>>>m = 4
>>> f"{n} times {m} is {n*m}"

'3 times 4 is 12'

It’s a good idea to keep any expressions used in an f-string as simple
as possible. Packing a bunch of complicated expressions into a string
literal can result in code that is difficult to read and difficult to main-
tain.

f-strings are available only in Python version 3.6 and above. In ear-
lier versions of Python, you can use .format() to get the same results.
Returning to the Zaphod example, you can use . format () to format the
string like this:

>>> "{} has {} heads and {} arms".format(name, heads, arms)

'Zaphod has 2 heads and 3 arms'

f-strings are shorter and sometimes more readable than using . for-
mat (). You'll see f-strings used throughout this book.

95

4.8. Find a String in a String

For an in-depth guide to f-strings and comparisons to other string for-
matting techniques, check out Real Python’s “Python 3’s f-Strings: An
Improved String Formatting Syntax (Guide).”

Review Exercises

You can find the solutions to these exercises and many other bonus
resources online at realpython.com/python-basics/resources

1. Create a float object named weight with the value 0.2, and create
a string object named animal with the value "newt". Then use these
objects to print the following string using only string concatena-
tion:

0.2 kg is the weight of the newt.

2. Display the same string by using . format () and empty {} placehold-
ers.

3. Display the same string using an f-string.

4.8 Find a String in a String

One of the most useful string methods is . find(). As its name implies,
this method allows you to find the location of one string in another
string—commonly referred to as a substring.

To use .find(), tack it to the end of a variable or a string literal with
the string you want to find typed between the parentheses:

>>> phrase = "the surprise is in here somewhere"
>>> phrase.find("surprise")
4

The value that . find() returns is the index of the first occurrence of the
string you pass to it. In this case, "surprise” starts at the fifth character
of the string "the surprise is in here somewhere", which has index 4
because counting starts at zero.

96

https://realpython.com/python-f-strings/
https://realpython.com/python-f-strings/
https://realpython.com/python-basics/resources/

This is a sample from “Python Basics: A Practical
Introduction to Python 3”

With the full version of the book you get a complete Python curriculum
to go all the way from beginner to intermediate-level. Every step along
the way is explained and illustrated with short & clear code samples.

Coding exercises within each chapter and our interactive quizzes help
fast-track your progress and ensure you always know what to focus on
next.

Become a fluent Pythonista and gain programming knowledge you
can apply in the real-world, today:

If you enjoyed the sample chapters you can purchase a full
version of the book at realpython.com/pybasics-book

https://realpython.com/pybasics-book

