
Creating the GFS6p Web API

By: Bas Retsios

Date: 25-November-2021

Goal

Develop a Web API service that provides the 10-day Global Forecast System (GFS) data for a single

lat/lon location, instantly, and requiring minimal internet bandwidth.

Introduction

Global Forecast System wikipedia documentation:

https://en.wikipedia.org/wiki/Global_Forecast_System

Global Forecast System official website:

https://www.ncei.noaa.gov/products/weather-climate-models/global-forecast

Global Forecast System data download link: https://www.nco.ncep.noaa.gov/pmb/products/gfs/

Downloading 10-day forecast files (10 raster images for 6 parameters) takes 2 hours. Every 6 hours a

new forecast is available.

At the ITC, a service is downloading the forecast files (daily, at 6 AM), and aggregates the 6-hourly

forecasts to daily. The result is available here: https://filetransfer.itc.nl/pub/mpe/gfs_6p/

All forecast data files are available at this location, from the beginning that the service became

operational, in September 2018.

For this Web API service, we are only interested in the most recent data file, which becomes

available (after downloading, aggregating and processing) around 8:30 AM every day. This is based

on the forecast data that was available the previous day.

To get an impression on what is available, download the most recent data file, unzip it, and use ILWIS

to view the content (the data files are stored in the ILWIS format).

Below an example of the tmax (maximum temperature) file produced on 23-November 2021. This is

the forecast of day-1 in the 10-day period, so this is the temperature-forecast of 23-November-2021.

https://en.wikipedia.org/wiki/Global_Forecast_System
https://www.ncei.noaa.gov/products/weather-climate-models/global-forecast
https://www.nco.ncep.noaa.gov/pmb/products/gfs/
https://filetransfer.itc.nl/pub/mpe/gfs_6p/

6 parameters are available. Those are the forecasts of:

• tmin: daily minimum temperature

• tmax: daily maximum temperature

• apcp/Prec: Rainfall

• lhtfl/ETa: actual evapotranspiration

• pevpr/ETo: potential evapotranspiration

• rh: Relative Humidity

The goal of the Web API is – given a location expressed in latitude and longitude, to deliver for each

parameter the 10 forecast values for the next 10 days.

Example for the tmax forecast of 23-November-2021, at lat=52.219611, lon=6.896532 (Enschede,

NL). The maximum temperature from November 23 til December 2 is predicted to be between 3.6

and 11.6 degrees Celsius.

Thus given lat=52.219611 and lon=6.896532, the Web API must return the list with the daily

temperature numbers: [8.7, 7.9, 7.8, 4.7, 3.6, 3.6, 5.6, 7.5, 11.6, 4.9], so that a client of this Web API

can plot the temperature graphic.

In fact, the Web API must return the daily numbers of all 6 parameters: tmin, tmax, apcp, lhtfl, pevpr,

rh. It is then up to the client what to do with them (plot all or a selection).

Daily automation script

In order to maximize the performance of the Web API, and thus avoid downloading and unzipping a

file for every Web API request, a (Python) script will be created that automatically downloads and

unzips the latest forecast file from https://filetransfer.itc.nl/pub/mpe/gfs_6p/ . The script must run

once a day, in the morning, after the processing script has downloaded from GFS, aggregated the

data, and placed the zipfile at this location. The correct time for execution is around 8:30 AM. No

further download or preprocessing is needed for requests to the Web API, until the next day.

The following is the python code that will download and unzip the daily zipfile. Start your newly

installed IDLE (the Python Interactive Development Environment), select File -> New File, and

copy/paste the python code in the new file. Save the file in folder C:\Apache24\htdocs , and name it

fetch_gfs6p.py .

from datetime import date

import urllib.request

import os

https://filetransfer.itc.nl/pub/mpe/gfs_6p/

import zipfile

main()

today = date.today()

today = today.strftime('%Y%m%d')

archive = 'gfs6p_10d_' + today

if not os.path.exists(archive + '.zip'):

 url = 'https://filetransfer.itc.nl/pub/mpe/gfs_6p/' + archive +

'.zip'

 print('Downloading ' + url)

 # Download the file from `url` and save it locally under

`archive`:

 urllib.request.urlretrieve(url, archive + '.zip')

 print('Done! filename is ' + archive + '.zip')

else:

 print('File already downloaded; name is ' + archive + '.zip')

if not os.path.exists(archive):

 print('Unzipping ' + archive + '.zip')

 zip_ref = zipfile.ZipFile(archive + '.zip', 'r')

 zip_ref.extractall(archive)

 zip_ref.close()

 print('Done! folder name is ' + archive)

else:

 print('File already unzipped; content is in folder ' + archive)

Place this text in a new python script (named fetch_gfs6p.py) in folder C:\Apache24\htdocs .

Observe that the file uses the date of today to “guess” the filename that must be downloaded.

If the time is already 8:30 AM, test the file by running it (Run -> Run Module).

Observe that inside folder C:\Apache24\htdocs a new folder is created, containing the ILWIS raster

images (10 images for 6 parameters; in total 60 raster images and some metadata files).

The above script can be scheduled to run automatically every day at the same time, using the

Windows Task Scheduler. To open the Task Scheduler, press the Windows button, and type ‘task’.

Task Scheduler should appear as one of the options. Open it.

Click on Task Scheduler Library to observe the existing tasks that have been configured:

At the right side, click “Create Basic Task…”.

Name: give it a name that distinguishes this task.

Trigger: daily

Start: 08:30 every day:

Action: start a program

Program: python.exe

Arguments: the name of the script to be executed: fetch_gfs6p.py

Start-in (the location of the script and the data): C:\Apache24\htdocs

Click Finish.

The task is added in the list. Right-click on it and select Run to test it:

This would fetch the gfs6p zipfile (but the script is made to detect whether the file is already

downloaded, so it is not downloaded twice).

Web API python script

Now create the main Web API script that – given a latitude and longitude – will return 6 lists (one for

each parameter) with 10 numbers each (one for each day forecasted). To make the output of the

script more widely usable (to make it e.g. easier to implement a Web-Client), the output must be in

JSON format (instead of plain text or comma-delimited).

Here is an example of JSON formatted output (with hierarchical name/value pairs). In python such a

structure is called a “dictionary”.

Step 1: capture the correct GFS binary data files

At the same location as the previously created script test.py (C:\Apache24\htdocs), use IDLE to

create a new empty python file, and name it get_forecast.py .

Place the following code as the initial content of this new file:

#!/Python310/python

from datetime import date, timedelta

import os

import struct

import glob

import json

import cgi

def getForecast():

 lat = 0

 lon = 0

 georef = None

 today = date.today()

 today = today.strftime('%Y%m%d')

 archive = 'gfs6p_10d_' + today

 parameters =

[('lhtfl','ETa','mm/day','orange',100.0),('pevpr','ETo','mm/day','gr

een',100.0),('apcp','Prec','mm/day','blue',10.0),('tmin','Tmin','oC'

,'gray',10.0),('tmax','Tmax','oC','red',10.0),('rh','RH','%','cyan',

100.0)]

 results = []

 for item in parameters:

 result = dict()

 parameter = item[0]

 friendlyname = item[1]

 unit = item[2]

 color = item[3]

 scale = item[4]

 maplistpattern = archive + '/' + parameter + '_day??_' +

today + '.mp#'

 print(maplistpattern)

print('Content-type: text/plain')

print('')

result = getForecast()

The script will look like this:

Run the script (Run -> Run Module).

Confirm the text-output of the script. Those are the file-patterns that would match the 10 files for

each parameter. Confirm that those files are available in folder

C:\Apache24\htdocs\gfs6p_10d_2021MMDD, replace MMDD with the actual date).

Step 2: list all filenames

Back in the IDLE editor, replace the line:

print(maplistpattern)

with the following:

vals = getMaplistCross(lat,lon,maplistpattern,georef,scale,True)

Result:

Also add the new function getMaplistCross() before getForecast()

def getMaplistCross(lat, lon, maplistpattern, georef, scale, long):

 files = sorted(glob.glob(maplistpattern))

 print(files)

Result:

Run the script again. For each of the 6 parameters, the filenames of the 10 forecast files are

displayed, confirming that the script correctly identifies the source data files.

Step 3: read the binary ILWIS files

Add the following code near the top of the file, before getMaplistCross() but after import cgi.

This defines four functions that are able to read the two types of ILWIS binary file (.mp# files) that are

available in the GFS zipfile: “short” (2 bytes per pixel) and “long”: 4 bytes per pixel. The entire binary

file is read into a python array.

def ReadLong(ifile, bytes):

 items = bytes // 4

 buffer = ifile.read(bytes)

 vals = struct.unpack('<' + str(items) + 'i', buffer)

 return vals

def ReadShort(ifile, bytes):

 items = bytes // 2

 buffer = ifile.read(bytes)

 vals = struct.unpack('<' + str(items) + 'h', buffer)

 return vals

def readIlwisFileLong(filename):

 bytes = os.stat(filename).st_size

 f = open(filename, 'rb')

 vals = ReadLong(f, bytes)

 return vals

def readIlwisFileShort(filename):

 bytes = os.stat(filename).st_size

 f = open(filename, 'rb')

 vals = ReadShort(f, bytes)

 return vals

Result:

Replace getMaplistCross() with this version:

def getMaplistCross(lat, lon, maplistpattern, georef, scale, long):

 values = []

 files = sorted(glob.glob(maplistpattern))

 print(maplistpattern)

 for file in files:

 if long:

 mprvals = readIlwisFileLong(file)

 else:

 mprvals = readIlwisFileShort(file)

 print(len(mprvals), mprvals[0:10])

Result:

This now prints the total length of the ILWIS data file that was read, and also the first 10 numbers of

every data file.

Executing the script will show a result similar to this:

Step 4: verify the result

Note that the length of all arrays is the same: 1038240 numbers. This corresponds to the dimensions

of the raster image: 1440 x 721 pixels; each number is a pixel, stored one-row-at-a-time.

Step 5: read all timeseries values at location lat=0, lon=0

Add the following code above getMaplistCross().

The first function getGeoref() is the actual georeference of the images, without reading any of the

metadata files. We know the numbers, so we use them. This is bad practice (officially you would have

to read these numbers from the metadata files), but it works for now.

The second function getPixel() computes the actual pixel position (x, y location in a 2D array) given a

latitude and longitude.

The third function getPixelValue() computes the pixel position in the 1D array that we have available,

and returns the value at that position in the array. The value is scaled before being returned, in order

to get the value into the actual unit of the parameter (mm/day, degrees Celsius or percentage).

Officially the scaling number should have been read from the metadata files, but is hardcoded here

for ease (the scale numbers are in function getForecast()).

def getGeoref():

 georef=dict()

 georef['ysize']=721

 georef['xsize']=1440

 georef['MaxX']=179.875

 georef['MaxY']=90.0

 georef['MinX']=-179.875

 georef['MinY']=-90.0

 return georef

def getPixel(lat, lon, georef):

 x = int((georef['xsize'] - 1) * (lon - georef['MinX']) /

(georef['MaxX'] - georef['MinX']))

 y = int((georef['ysize'] - 1) * (lat - georef['MinY']) /

(georef['MaxY'] - georef['MinY']))

 pixel = dict()

 pixel['x'] = x

 pixel['y'] = y

 return pixel

def getPixelValue(lat, lon, vals, georef, scale):

 pixel = getPixel(lat, lon, georef)

 return vals[(georef['ysize'] - pixel['y'] - 1) * georef['xsize']

+ pixel['x']] / scale

The result looks like this:

Replace once again getMaplistCross() with its final version:

def getMaplistCross(lat, lon, maplistpattern, georef, scale, long):

 values = []

 files = sorted(glob.glob(maplistpattern))

 for file in files:

 if long:

 mprvals = readIlwisFileLong(file)

 else:

 mprvals = readIlwisFileShort(file)

 value = getPixelValue(lat, lon, mprvals, georef, scale)

 values.append(value)

 return values

Result:

Change function getForecast():

Replace the line georef = None by the call to the newly created georeferenced function:

georef = getGeoref()

Also add the statement print(vals) at the end of getForecast()

Result:

Run the script. The result will be 6 arrays with 10 numbers each.

Note that this is at hardcoded location lat = 0 and lon = 0 (Atlantic ocean).

Step 6: add more metadata to the output

Finally, complete the implementation of getForecast(), by producing a python dictionary, containing

for each of the parameters the name, the unit, the color (for repeatedly giving the same color when

plotting the parameter’s graph), and the numbers as date+value pairs.

To do this, delete the print(vals) line, and append the following code at the end of getForecast():

 d = date.today()

 values = []

 for val in vals:

 values.append({'date':d.strftime('%Y-%m-

%d'),'value':val})

 d = d + timedelta(days=1)

 result['parametername'] = friendlyname

 result['unit'] = unit

 result['color'] = color

 result['series'] = values

 results.append(result)

 return results

Result:

Replace the main program with the following:

print('Content-type: application/json')

print('')

result = getForecast()

print(json.dumps(result))

Note that the json.dumps() is to properly format the Python dictionary to the JSON format. Also the

Content-type: application/json is to let the client application “know” what the result is.

Run the program.

Now the result is the required JSON output.

Step 7: make the script get the lat/lon from the parameters of the webserver

In order to let the program capture the latitude and longitude from the parameters of the URL, add

the following 3 lines to the beginning of the getForecast() function (replace the lines with lat = 0 and

lon = 0):

 params = cgi.FieldStorage()

 lat = float(params.getvalue('lat', 0))

 lon = float(params.getvalue('lon', 0))

The program can now be run from the browser, and is perfectly suited to serve as the Web API

function that returns the GFS6p forecast values given a latitude and longitude:

localhost/get_forecast.py?lat=52&lon=6

Official Web API for GFS6p at the ITC

The official Web API that we have installed at the ITC for GFS6p is hosted at

rsgportal.itc.utwente.nl/gfs:

rsgportal.itc.utwente.nl/gfs/get_forecast_ext.py?lat=52&lon=6

Note that due to the nature of dictionaries, the order of the name/value pairs returned is random, so

if you open the same URL multiple times, the result is not identical (the data is the same, just in a

different order).

Note also that your self-created script takes about 1 second to compute and return the results, while

the official script has been optimized to be faster (about 0.1 second). This additional speed-

optimization effort will be appreciated later on when creating the client software that consumes this

Web API service.

A web-client is available here: http://rsgportal.itc.utwente.nl/gfs/

http://localhost/get_forecast.py?lat=52&lon=6
http://rsgportal.itc.utwente.nl/gfs/get_forecast_ext.py?lat=52&lon=6
http://rsgportal.itc.utwente.nl/gfs/

Questions

What can we do to further speed-optimize the code that we created in get_forecast.py?

What other improvements can you think of? What e.g. happens after midnight? Or what happens

when the scheduled task to fetch the zipfile runs before the zipfile was actually in-place?

