

GPS Data Capture With ArcPad

Chris Wayne ESRI-Northwest, Seattle

Essentials of GPS

- GPS Data Capture with ArcPad
- ArcPad and GPS Integration Settings
- Field Mapping System Considerations
 HARDWARE!

Essentials of GPS

Evolving as a key component of GIS

- Works on trilateration of satellite radio signals from satellites
- "How Far?" = "How long did it take the radio waves to get from the satellite to the receiver?"
- All signals and positions have error

GPS Components

- Antenna-receiver
- Processor = The GPS
 - Contain quartz clocks of varying quality
- Data Logger
- Computer Software
- Various Grades of GPS
 - Recreational
 - Resource Mapping
 - Sub-meter
 - Survey

GIS-GPS Integration Workflow

- Build an enterprise database
- Determine field data collection methodology
- Collect the field data: geometry and attributes
- Import field data into GIS format
- Analyze and interpret new data in GIS

GPS Mission Planning

 Objective: Integrate your field data with your enterprise GIS
 What is the Enterprise?

- Pick a study area and environment
- Plan to update certain features on the ground using GPS
- Plan feature and attribute data models

Planning for attribute capture

- Design in Attribute fields: Always include a Notes field (text, 256 width)
 - GDB Domains = allowable values for each field: Always include "other"
 - + GDB Subtypes \rightarrow Default values
 - Geodatabase & ArcPad Studio Build forms
- Maintains data value consistency, saves time
- Other Examples: Trimble Pathfinder Office, Rite in the Rain Notebooks
- Possible but not easy to modify in field

Planning for feature capture

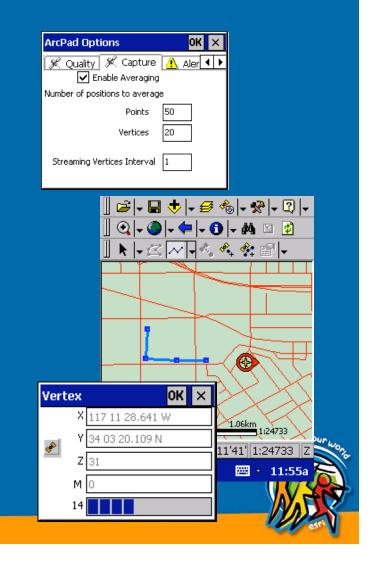
Feature geometry may depend on scale
Polygon size: meters, acres, miles?

Land cover ("fuzzy") vs. parking lot ("sharp")

Douglas Co. Parks Example

Parks as points for locator map
Features as points, line, polygons

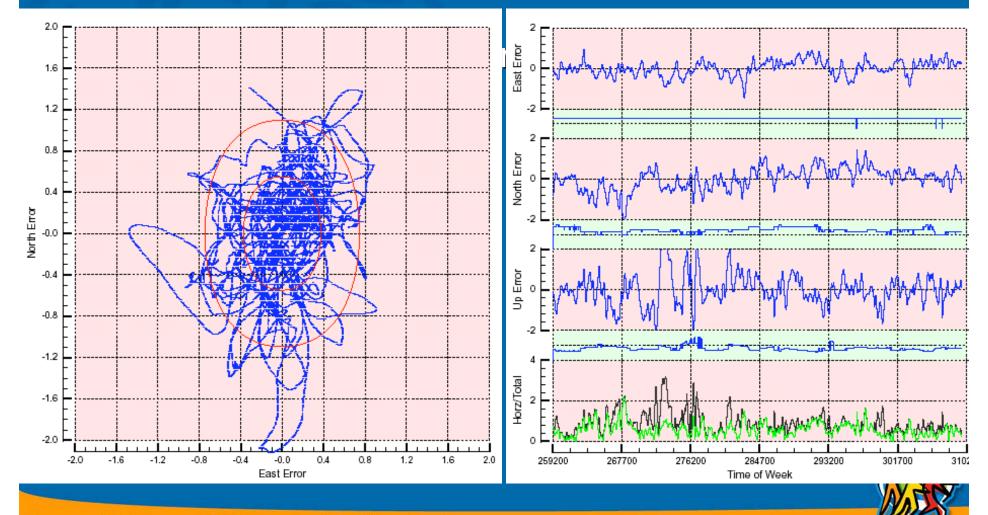
Data Life Cycle : ArcPad in ArcGIS 8.3


- Start with GeoDatabase (personal or SDE)
- Make an ArcMap and export to ArcPad
 GDB → .shp + scripts and forms
- Update/add features to shapefiles
- Upload .shp data to PC and check updated features back into GDB

GPS data capture in ArcPad

- Capture points, lines, polys
- Point and streaming mode digitizing
- Edit geometry
 - Add, move
 - Features or vertex
 - Append to lines
- Specify streaming vertices interval
- Position averaging for points and vertices
- Quality Thresholds

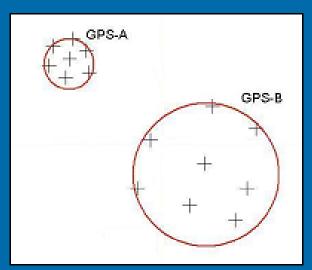
Accuracy


 GPS position accuracy is established by the GPS receiver - Autonomous Real-Time differential correction Post-processing - Supported via Trimble's GPScorrect extension for ArcPad 6 ArcPad and GPS data capture accuracy Controlled by quality thresholds Enhanced by position averaging

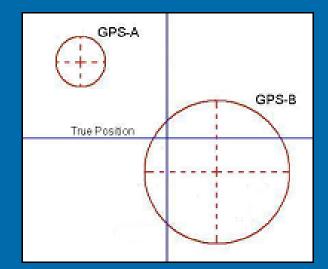
Static accuracy

- Characterized at known positions (truth)
- Data logged for 12+ hours
- Data logged in the open and under canopy
- Dynamic accuracy
 - Walk/drive between two known positions
 - Measure perpendicular error from straight line

- Often referred to as pass-to-pass accuracy

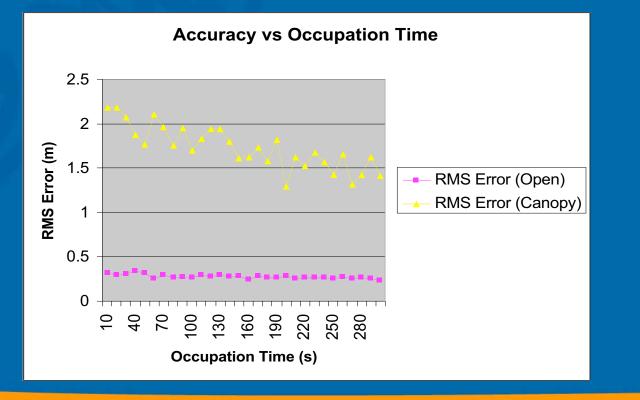

- Comparing two receivers
 - Data must be logged at the same time
 - Antennas must be <1m apart
 - Settings must be identical
 - Turn off automatic features
 - Log in typical environment
 - Log close to where equipment will be used
 - Be sure of WGS84 coordinates of truth points
 - Log as much data as possible and repeat tests

Accuracy versus Precision Accuracy is an absolute measure against truth Precision is a relative measure of variability Need accuracy for Collecting data for a GIS Relocating assets Need precision for Measuring lengths and areas Vehicle guidance

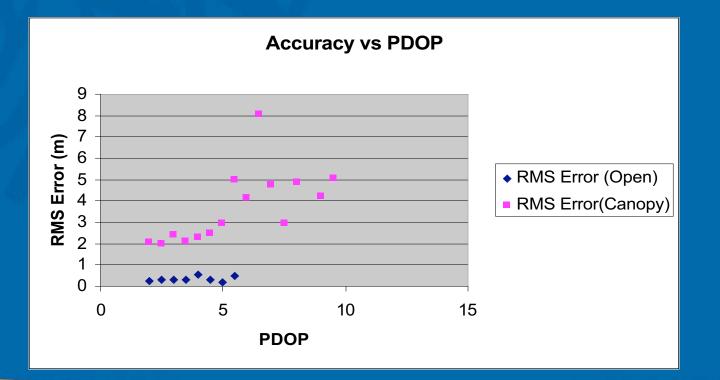


 GPS-A is more <u>precise</u> than GPS-B

 After averaging, GPS-B is more <u>accurate</u> than GPS-A

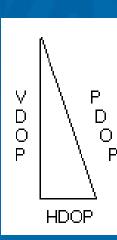

What factors affect GPS accuracy

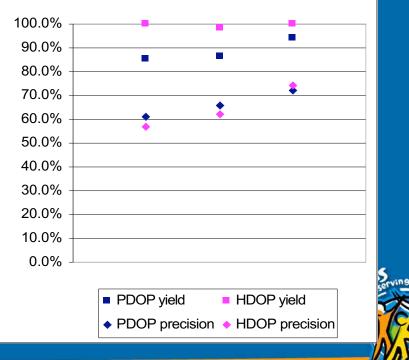
 Receiver and antenna type Data collection and processing techniques - Occupation time, settings Differential correction Satellite geometry – DOP -Varies over time, but predictable - In-field mission planning Environment Ionospheric conditions Obstructions and multipath EVEREST multipath rejection


What factors affect GPS accuracy

- Accuracy improves marginally with occupation time
- Improvement more significant in tough environments

What factors affect GPS accuracy

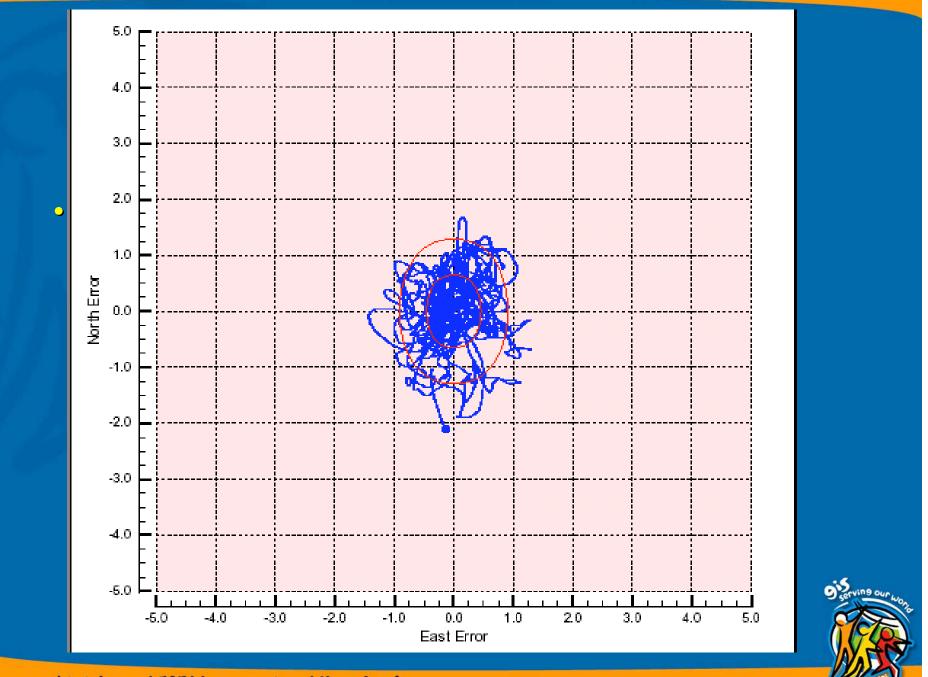

- Error increases with DOP, linearly for higher DOPs
- Impact is more significant in tough environments



What factors affect GPS accuracy

Use PDOP mask (6) for 3D
Use HDOP mask (4) for 2D (i.e. no need for heights) – gives better yield for similar horizontal precision

• $PDOP^2 = HDOP^2 + VDOP^2$



How accurate is real-time differential GPS

Depends on receiver type

- Submeter
- 2-5m
- 3-15m
- And correction source
 - Satellite differential
 - Beacon
 - WAAS
 - Other RTCM source
- RTCM age limit is a yield / accuracy trade-off
- Velocity filtering helps in tough environments

What is WAAS

- Wide Area Augmentation System
- Created by US Federal Aviation Administration to improve efficiency of aviation operations
- Augments GPS with correction signal from geostationary satellite on GPS frequency
- Initial Operation Capability not yet declared
- Free to use
- 7m vertical / horizontal

Is accuracy improved by postprocessing???

Real-time DGPS can be postprocessed to further improve accuracy by

GPS Pathfinder Office
GPS Pathfinder Express
Using closer base stations
Filling in any real-time gaps

Log velocity records for line / area smoothing

Differential Correction – Better GPS

Green = GPS after differential correction with GPScorrect

Quality Thresholds

- Quality controls
- Warnings
 - Non-compulsory
 - Compulsory
- Alerts
 - Message box
 - Sound alarm

ArcPad Options	ок 🗙
K Quality <u>K Ca</u> O No Warnings Non-Compuls Compulsory	sory Warnings
Maximum PDOP Maximum EPE DGPS Mode Only SD Mode Only	6

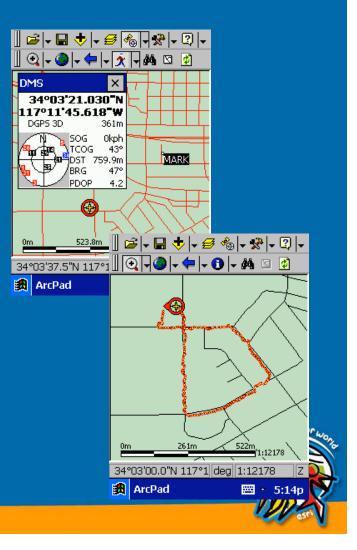
Accuracy vs. Yield vs. Storage

- It may be more important to get ANY GPS position...
- Than to get a good position
- Most accurate settings =/= most receptive
- Adjustable as situation dictates: Bad reception, "canyon conditions,"
- Speed of travel \rightarrow point interval time
- Run stats on precision

Real-time correction

- Corrects positions before they are collected
- Broadcast from three sources
 - Beacon- USCG Navigation beacon, free
 - Commercial Satellite- By subscription
 - WAAS- Free, line of site, avaiation
- GPS unit must be enabled
 – each source is a separate feature

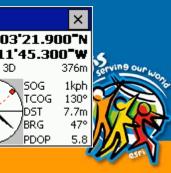
ArcPad GPS connectivity


Support GPS protocols

- NMEA 0183
- TSIP
- Delorme Earthmate
- Federal PLGR
- Works with almost all GPS receivers that output these protocols
- Key to success: understanding the relationship between GPS Setting and ArcPad Settings

GPS navigation

 Basic navigation Shows current GPS location and direction of travel Automatically centers map on GPS position Shows distance and bearing to destination GPS Tracklog - "bread crumb" trail Captures GPS Tracklog as shapefile with no attributes


GPS Position Window

- Displays info from GPS receiver
 Current X, Y, Z Position in different coordinate systems
- GPS Mode
 - 2D, 3D, DGPS, RTK
- Navigation information
- Satellite Skyplot
- Satellite signal strengths

DMS		×		
34°03'21.540"N 117°11'45.480"W				
3D	4J.40	384m		
1 4 13	SOG (TCOG).2kph 50°		
20 22 21	DST BRG	19.3m 32°		
29	PDOP	5.8		

DMS

I can't see the GPS on my ArcPad Map!

1. Check the GPS receiver

- Power on? set to output NMEA messages? Make sure all messages that can be sent are turned on.
- 2. Check Connections:
 - Make sure a NULL modem adaptor is used when attaching the GPS receiver to the CE device if necessary.
 - Put ArcPad in GPS Debug mode to verify that something is being sent to the CE device from the GPS receiver.
 - Check the GPS manual to determine the COM port settings (port number, baud rate, data bits, stop bits, parity) ;make sure the ArcPad Options are set accordingly.

3. Check Satellites

- If you are getting a signal in GPS Debug, open the skyplot and look at satellite signals
- 4. Check Coordinate System
 - Make sure your map has a coordinate system
 - GPS Output Datum set correctly?

GPS Setting vs. ArcPad Settings

PS PS – WGS is usually fault PS – NMEA is usually fault	ArcPad ArcPad ArcPad
fault PS – NMEA is usually	
Pad	GPS – Usually Default of 1 second
cPad	GPS – Usually Default of 1
cPad - Device	N/A
PS Defaults	ArcPad
cPad - Data	
PS – must be enabled	ArcPad – Quality Options & Warning
	Pad - Device S Defaults Pad - Data

Building a Field GIS System

- GPS Receiver
- ArcPad Software
- ArcPad Hardware
- ArcGIS
- GIS Data
- Auxiliary devices and software

A Field Mapping System Must Enable You to...

Navigate:

to the site, back to base, then back to the features at a later date

• Record:

Capture new and/or Update existing data:

– location and/or attributes

Display:

Data you are recording + other map layers.

Choosing a Field Mapping System: Hardware

Determining Factors
Proximity to infrastructure, vehicles. Carrying capability.
Physical carrying restrictions.
Operating time frame, cost, added weight.
Amount and type of background data to be used, and amount of data to be captured.
Scale of mapping project.
Number of peripheral devices to be used (GPS, laser rangefinder, etc.).
Readability in low-light and bright light conditions, available screen display size.
Environment (tropics/desert).
Budget.

Other Hardware and Gear

Auxiliary devices

 Transit -- Laser range finder
 Bar code scanner -- Hydrolab
 Digital camera -- voice recorder
 802.11
 CDPD/GPRS Wireless Internet

 Map and Compass

Other ESRI GPS Solutions

ArcMap GPS Extension
ArcGIS Tracking Analyst
ArcIMS Tracking Server
Map Objects

HARDWARE!

Look at the toys

Arcpad Interface
GPS Tools
GPS Editing
Hooking up a GPS
Collecting data!

