
ILWIS 2.2 Guide 93

Chapter 6

 Map & Table Calculation

Note: This chapter is written as an enhancement to Chapter 6: Map & Table
calculation in the ILWIS 2.1 Reference Guide. It does not completely replace the
mentioned chapter: instead you are invited to use both as one.

6.1 Map calculation

6.1.1 Logical operators

Truth table of logical AND
The result of A and B is true only if both expressions A and B are true. If either
expression A or expression B is true, false is returned. If A is true and B is
undefined, or vice versa, then undefined is returned.

The truth table of the logical AND is:

Truth table of logical OR
The result of A or B is true if one or both of the expressions a and b is true.

The truth table of the logical OR is:

Truth table of logical XOR
The result of A xor B is true if only one of the expressions A or B is true. When both
expressions are true or when both expressions are false, false is returned. When
either expression A or B is undefined, undefined is returned.

Map & Table Calculation Table calculation

94 ILWIS 2.2 Guide

The truth table of the logical XOR is:

Truth table of logical NOT
The result of not A is true if expression A is false. If expression A is true, false is
returned. If expression A is undefined, undefined is returned.

The truth table of the logical NOT is:

6.2 Table calculation

6.2.1 Aggregating values

Several 'functions' are available to aggregate values of a value column. Aggregation
means that you get one aggregate value, for instance the average or the sum, of a
whole column, or one value per group of class names. In this way, you can for
instance calculate the total area of each class.

The following aggregation 'functions' are available:
§ average,
§ count,
§ minimum,
§ median,
§ maximum,
§ predominant,
§ standard deviation, and
§ sum.

These functions can be used:
§ to aggregate values of a whole column (using any aggregation function).

You will obtain one output value; for all records, the same aggregation answer
appears.

§ to aggregate values of a column per group, i.e. aggregate values by the classes or
ID of another column (using any aggregation function): use a 'group by' column.
For all records that have the same class or ID in the selected 'group by' column,
the same aggregation answer will appear. The 'group by' column is usually a
column with a class, or ID domain.

Table calculation Map & Table Calculation

ILWIS 2.2 Guide 95

§ to aggregate values while taking into account weights: use a weight column. In
this way, you can calculate weighted averages, etc. The weight column is a
column with a value domain.
– When you do not select a 'group by' column, you will obtain one output

value.
– When you do select a 'group by' column, you will obtain answers per group.

Aggregation results can be written either:
§ into the same table, in a new column, or
§ in a new table, in a new column (only possible through the menu), or
§ in another existing table, in a new column.

Aggregations can be performed by choosing the Aggregation from the Columns
menu in a table window, or by typing an expression on the command line of a table
window.

Aggregation through a dialog box
Generally, you will aggregate columns via the menu in the table window. To
aggregate the values of a column:
§ In a table window which contains the column which values you want to

aggregate, open the Columns menu and choose the Aggregation command. The
Aggregate Column dialog box appears.

§ Fill out the Aggregate Column dialog box:
– Select the value column that contains the data you want to aggregate.
– Select the aggregation function that you want to use: Average, Count,

Maximum, Median, Minimum, Predominant, Standard Deviation or Sum.
– If you want to aggregate values by classes or IDs in a Group By column,

select the Group By check box, and select the 'group by' column; else the
values of the complete column will be aggregated.

– If you want to use weight values during the aggregation, select the Weight
check box and select the weight column; else all records are treated equally.

– If you want the aggregation results written into another table; select the
Output Table check box and type a table name; else the results will be
written into a column in the current table.

– Type a name for the output column that will contain the results of the
aggregation.

For examples of aggregations, click the links in the text on aggregations from the
command line as given below.

Aggregation through the command line
To aggregate the values of a column you may also type a statement on the command
line of a table window.

The syntax for aggregation on the command line is:
ColumnAggregateAvg(col)

calculates the average value of values in column col

Map & Table Calculation Table calculation

96 ILWIS 2.2 Guide

ColumnAggregateAvg(col, g)
calculates the average value of values in column col per group g

ColumnAggregateAvg(col, g, w)
calculates the average value of values in column col per group g
using weights w

ColumnAggregateAvg(col , , w)
calculates the average value of values in column col using weights w

ColumnAggregateCnt(col, g)
counts the number of times that column col is not undefined,
optionally per group g

ColumnAggregateMax(col, g)
determines the maximum value of column col, optionally per group g

ColumnAggregateMed(col, g, w)
calculates the median value of column col, optionally per group g,
and optionally using weights w

ColumnAggregateMin(col, g)
determines the minimum value of column col, optionally per group g

ColumnAggregatePrd(col, g, w)
determines the predominant value of column col, optionally per
group g, and optionally using weights w

ColumnAggregateStd(col, g, w)
calculates the standard deviation of column col, optionally per group
g, and optionally using weights w

ColumnAggregateSum(col, g)
calculates the sum of column col, optionally per group g

Notes
§ The use of a group column g and/or a weight column w is optional:

– Aggregations with parameters (col) return one aggregation result for all
entries of column col.

– Aggregations with parameters (col, g) return one aggregation result for all
entries with the same class name or ID in group column g.

– Aggregations with parameters (col, g, w) return one weighted aggregation
result for all entries with the same class name or ID in group column g.

– Aggregations with parameters (col , , w) return one weighted aggregation
result for all entries of column col.

§ Parameter col refers to nothing else than a column name. This means that within
the brackets no other expressions can be used.

§ Parameter g is a column with a class or ID domain; parameter w is a column
with a value domain.

§ For ILWIS 1.41 users: argument g can be considered as the key column.

Aliases
Instead of the long 'ColumnAggregateAggFunc', you can also use the following
aliases (the links provide examples):

Table calculation Map & Table Calculation

ILWIS 2.2 Guide 97

AGGAVG(col, g, w) calculates the average value of col, optionally per
group g ,and optionally using weights w

AGGCNT(col, g) counts the number of times that column col is not
undefined, optionally per group g

AGGMAX(col, g) determines the maximum value of col, optionally per
group g

AGGMED(col, g, w) calculates the median value of col, optionally per
group g, and optionally using weights w

AGGMIN(col, g) determines the minimum value of col, optionally per
group g

AGGPRD(col, g, w) determines the predominant value of col, optionally
per group g, and optionally using weights w

AGGSTD(col, g, w) calculates the standard deviation of col, optionally
per group g, and optionally using weights w

AGGSUM(col, g) calculates the sum of col, optionally per group g

Example 1
Two simple aggregations are:
Avg1 = AGGAVG(Area)
Avg2 = AGGAVG(Area,Landuse)

Parcel Landuse Area Avg1 Avg2
00123 Residential 4000 10000 5000
00124 Residential 3500 10000 5000
00125 Commercial 17500 10000 17500
00126 Residential 7500 10000 5000
00127 Industrial 20000 10000 20000
01272 Institutional 12500 10000 12500
04625 Residential 5000 10000 5000

Column Avg1 contains the average of the area of all parcels.
Column Avg2 contains the averages of parcel areas per land use class: Residential,
Commercial, Industrial and Institutional. For class Residential:
(4000+3500+7500+5000) / 4 = 5000

Example 2 (advanced)
When you are currently in one table (Province) and you want to retrieve aggregated
values from another table (Municip), you may use:
Population = AGGSUM(Municip.pop, municip.prov)
Province.tbt Municip.tbt
Dom. Province any info Dom. Municip Population Province
Prov1 1000 Municip1 9920 Prov1
Prov2 2000 Municip2 4131 Prov1
Prov3 5000 Municip3 2161 Prov2
Prov4 4000 Municip4 4918 Prov1
Prov5 2000 Municip5 10461 Prov3
....

Map & Table Calculation Table calculation

98 ILWIS 2.2 Guide

Province.tbt after aggregation
Dom. Province any info Population
Prov1 1000 18969
Prov2 2000 2161
Prov3 5000 10461
Prov4 4000 ?
Prov5 2000 ?
...

This expression will only work when the GroupBy column (Municip.prov) has the
same domain as the current table (Province). It is usually easier to perform a join
operation through the Join dialog box. This will give the same result as the
expression above, and is even more flexible. For more information, see Table
calculation : Join columns.

Example 3 (advanced)
To write output values from a current table (Parcel) into in a new column of another
existing table (Landuse), use the following syntax:
Landuse.AvgParcelSize = AGGAVG(Parcel.Area, Parcel.Landuse)

Parcel.tbt Landuse.tbt
Dom. Parcel Landuse Area Dom. Landuse any info
00123 Residential 4000 Residential 1000
00124 Residential 3500 Commercial 2000
00125 Commercial 17500 Industrial 5000
00126 Residential 7500 Institutional 4000
00127 Industrial 20000 ...
01272 Institutional 12500
04625 Residential 5000
...

Landuse.tbt after aggregation
Dom. Landuse any info AvgParcelSize
Residential 1000 5000
Commercial 2000 17500
Industrial 5000 20000
Institutional 4000 12500
...

The average of Area in table Parcel grouped by Landuse, is written into column
AvgParcelSize in table Landuse.

When you want to retrieve for instance area values from a histogram, you have to
specify the extension of the histogram as tablename.ext.column.

6.2.2 Joining columns of other tables

The join operation enables you to read a column from a second table and join it into
the current table. To do so, you need a link between the tables. This link is made via
the domain of the tables or via the domain of columns in the tables. When a column
is used to make the link, this column is called a key column. When the domain of a
table is used to make the link, you do not have to specify it.

Table calculation Map & Table Calculation

ILWIS 2.2 Guide 99

Joining two tables use the same domain
Do not specify key columns. The tables have a one to one relation.

Joining column in the current table uses the same domain as the second table
Only specify a key column from the current table, i.e. key1 or the Key column. The
relation between the column of the current table and the second table is a many to
one relation.

Joining current table uses the same domain as a column in the second table
Only specify a key column from the second table, i.e. key2:
§ when the classes or IDs in the key column of the second table are not unique (i.e.

one to many relation), then the values that you want to join need to be
aggregated and you have to specify key2 as the Group By column by which the
values to be joined will be grouped during aggregation. Optionally, you can
select a column from the second table as a weight column.

§ when the classes or IDs in the key column of the second table are unique (i.e.
one to one relation): specify key2 as the Via Key column.

Joining column in the current table and second table use the same domain
Specify a key column from the current table, i.e. key1, as well as a key column from
the second table, i.e. key2:
§ when the classes or IDs in the key column of the second table are not unique (i.e.

many to many relation), then the values that you want to join need to be
aggregated and you have to specify key2 as the Group By column by which the
values to be joined will be grouped during aggregation. Optionally, you can
select a column from the second table as a weight column.

§ when the classes or IDs in the key column of the second table are unique (i.e.
many to one relation): specify key2 as the Via Key column.

Notes
§ When you need to specify a key column from the first table, i.e. key1; this is

called the Key column.
§ When you need to specify a key column from the second table, i.e. key2, you

can either do this by specifying a Group By column (you will aggregate the
values to be joined) or by specifying a Via Key column.

§ Links between tables are always through class or ID domains.
§ For more information on column aggregations, refer to Table calculation :

aggregating values.

Joining through a dialog box
Generally, you will join columns via the menu in the table window. To join a
column from another table into the current table:
§ In a table window which displays the table into which you want to join one or

more columns of another table, open the Columns menu and choose the Join
command. The Join Column dialog box appears.

§ Fill out the Join Column dialog box:
– Select the table from which you want to join a column into the current table.

Map & Table Calculation Table calculation

100 ILWIS 2.2 Guide

– Select a column from the second table, i.e. the column, which you want to
join into the current table.

– If necessary, select the Key check box and fill out a column name of the
current table (key1) which will be used to make a link to the second table;
else deselect the Key check box.

– If necessary, select the Aggregation check box and select a column from the
second table for the Group By column (key2). Furthermore, select an
aggregation function and, optionally, select a weight column from the second
table which contains the weight values to be used during the aggregation.
Otherwise, fill out a column name from the second table as the Via Key
(key2 and no aggregation).

– Type the name of the output column that will contain the joined values.

Joining through the command line
To join a column from another table into the current table you may also type a
statement on the command line of a table window.

The syntax of the join operation on the command line is:
(1) OutColName = ColumnJoin(TableName, ColumnName)
(2) OutColName = ColumnJoin(TableName, ColumnName, Key1)
(3) OutColName = ColumnJoin2ndKey(TableName, ColumnName, ViaKey)
(4) OutColName = ColumnJoin2ndKey(TableName, ColumnName, Key1,

ViaKey)
(5) OutColName = ColumnJoinAggFunc(TableName, ColumnName, GroupBy)
(6) OutColName = ColumnJoinAggFunc(TableName, ColumnName, GroupBy,

Weight)
(7) OutColName = ColumnJoinAggFunc(TableName, ColumnName, GroupBy,

Weight, Key1)

where:
OutColName is the output column name. Usually, this is the same as the

column name that was chosen to be joined into the current table.
ColumnJoin is the command to start the Join operation.
ColumnJoin2ndKey

is the command to start the Join operation using a column from
the second table to make a link to the current table.

TableName is the name of the second table from which you want to join a
column into the current table.

ColumnName is a column name from the second table, i.e. the column that you
want to join into the current table.

Key1 is a column from the current table;
the domain of this column is either the same as the domain of the
second table, or as the domain of a column in the second table.

ViaKey is a column from the second table in which the classes or IDs are
unique; the domain of this column is either also the domain of the
current table or the same as the domain of a column in the current
table. No aggregation will be performed.

Table calculation Map & Table Calculation

ILWIS 2.2 Guide 101

ColumnJoinAggFunc
is the command to start the Join operation with aggregation, i.e.
joining while using an aggregation function. Type directly after
ColumnJoin one of the following aggregation functions: Avg |
Cnt | Max | Med | Min | Prd | Std | Sum. The AggFunc part
should thus be replaced by one of the aggregation functions.

GroupBy is a column from the second table in which the classes or IDs are
not unique; the values to be joined will be aggregated according
to this GroupBy column.

Weight is an optional parameter to specify a column from the second
table which contains weight values for the aggregation.

Formula 1 represents the case where both tables have the same domain.
Formula 2 represents the case where a column of the current table has the same
domain as the second table (i.e. many to one relation).
Formula 3 represents the case where the current table uses the same domain as a
column in the second table and when the classes or IDs in that column in the second
table are unique (one to one relation).
Formula 4 represents the case where a column in the current table uses the same
domain as a column in the second table and when the classes or IDs in that column
in the second table are unique (many to one relation).
Formula 5 represents the case where the current table uses the same domain as a
column in the second table and when the classes or IDs in that column in the second
table are not unique (one to many relation). The values will be aggregated during the
join.
Formula 6 represents the case where the current table uses the same domain as a
column in the second table and when the classes or IDs in that column in the second
table are not unique (one to many relation). The values will be aggregated during the
join while using a weight column.
Formula 7 represents the case where a column in the current table uses the same
domain as a column in the second table and when the classes or IDs in that column
in the second table are not unique (many to many relation). The values will be
aggregated during the join while using a weight column.

Example 1
The domain of the current table is the same as the domain of another table.

Table Landuse contains landuse classes and also lists the commercial value of these
landuse classes.

The (raster or polygon) histogram of the landuse map contains the area of each
landuse class.
The column Area from the histogram will be joined into attribute table Landuse.

Landuse.tbt Landuse.his/.hsa Landuse.tbt after joining
Dom Landuse Commval Dom Landuse Area Dom Landuse Commval Area
Residential 1000 Residential 9920800 Residential 1000 9920800
Commercial 2000 Commercial 4131200 Commercial 2000 4131200
Industrial 5000 Industrial 2161600 Industrial 5000 2161600
Institutional 4000 Institutional 4918400 Institutional 4000 4918400
Agricultural 2000 Agricultural 10461600 Agricultural 2000 10461600

Map & Table Calculation Table calculation

102 ILWIS 2.2 Guide

Open table Landuse as the current table. From the Columns menu in the table,
choose Join.
In the Join Columns dialog box:
§ Select histogram Landuse as the second table,
§ Select column Area as the column you want to join into the current table,
§ Type a name for the output column to contain the joined values, e.g. Area.

Or open table Landuse as the current table, and type the following expression on the
command line of the table window:
Area = ColumnJoin(Landuse.his.Area)
Area = ColumnJoin(Landuse.hsa.Area)

With the first formula, the column Area from the raster histogram Landuse.his
is joined into the attribute table.
With the second formula, the Area column from polygon histogram
Landuse.hsa is joined into the attribute table.

Example 2
The domain of a column in the current table is the same as the domain of the second
table.
Table Municip contains a number of municipalities, the population of each
municipality and a column indicating whether the municipalities are considered
large, medium or small (column MunClass).
Table MuniSubs contains information for large, medium and small municipalities. It
contains a column Subsidy, which represents for instance expected subsidy figures
for types of municipalities.
The subsidy figures in table MuniSubs will be joined into the Municipality table.

Municip.tbt MuniSubs.tbt
Dom. Municip Population MunClass Dom.MunClass Subsidy
Municip1 99208 MunLarge MunSmall 1000
Municip2 41312 MunMedium MunMedium 2000
Municip3 21616 MunSmall MunLarge 5000
Municip4 49184 MunMedium ...
Municip5 104616 MunLarge
...

Municip.tbt after joining
Dom. Municip Population MunClass Subsidy
Municip1 99208 MunLarge 5000
Municip2 41312 MunMedium 2000
Municip3 21616 MunSmall 1000
Municip4 49184 MunMedium 2000
Municip5 104616 MunLarge 5000
...

Open table Municip as the current table. From the Columns menu in the table,
choose Join.

Table calculation Map & Table Calculation

ILWIS 2.2 Guide 103

In the Join Columns dialog box:
§ Select table MuniSubs as the second table,
§ Select column Subsidy as the column to join into the current table,
§ Select the Key check box, select column MunClass.
§ Type a name for the output column to contain the joined values, e.g. Subsidy.

Or open table Municip as the current table, and type the following expression on the
command line of the table window:
Subsidy = ColumnJoin(RateMuni, Subsidy, MunClass)

Example 3
The domain of your current table is the same as the domain of a column in the
second table.
Table Province lists for each province some information. The domain of this table is
Province; the Province domain contains all provinces of a certain country.
Table Municip contains population figures for each municipality. Furthermore, for
each municipality it is known in which province it is. The column Population in the
table has a value domain. The column Province has domain Province.
Column Population in table Municip will be joined into the Province table. As a
province usually contains more than one municipality, the municipal population
figures need to be aggregated during the join.

Province.tbt Municip.tbt
Dom. Province any info Dom. Municip Population Province
Prov1 1000 Municip1 9920 Prov1
Prov2 2000 Municip2 4131 Prov1
Prov3 5000 Municip3 2161 Prov2
Prov4 4000 Municip4 4918 Prov1
Prov5 2000 Municip5 10461 Prov3
....

Province.tbt after joining
Dom. Province any info Population
Prov1 1000 18969
Prov2 2000 2161
Prov3 5000 10461
Prov4 4000 ?
Prov5 2000 ?
....

Open table Province as the current table. From the Columns menu in the table,
choose Join.
In the Join Columns dialog box:
§ Select table Municip as the second table,
§ Select column Population as the column to join into the current table,
§ The Aggregation check box is already selected:

– select for the Aggregation function: Sum,
– select for the GroupBy column: column Province,

§ Type a name for the output column to contain the joined values, eg Population.

Map & Table Calculation Table calculation

104 ILWIS 2.2 Guide

Or open table Province as the current table, and type the following expression on the
command line of the table window:
Population = ColumnJoinSum(Municip, Pop, Prov)

Example 4
The domain of a column in the current table is the same as the domain of a column
in the second table.
From the Columns menu in the table, choose Join. Choose the table name, which
you want to use and the column to join into your current table. Then, select a key
column in your current table and a column in the second table to group your data.
Note that these two columns must have the same domain. You may choose to
perform an aggregation on the values. The join will take place as described before.

6.2.3 Creating and running scripts (example)

By creating and applying a script, you can perform a series of ILWIS operations.
This is comparable to using batch files in ILWIS version 1.4.

With a script, MapCalc and TabCalc expressions can be performed, and any ILWIS
operation. Further, some extra commands are possible to show objects, or to perform
some file management. For more information on script syntax, see Appendices :
operators and functions in MapCalc and TabCalc, Appendices : ILWIS expressions
and Appendices : ILWIS script language (syntax).

To create a script
§ In the Main window, open the File menu, and choose Create Script, or
§ In the Operation-list, double-click the item New Script.
The Create Script dialog box appears in which you can type your script expressions.

Example
To calculate a slope maps in percentages and in degrees:
1. Create a script (e.g. 'Slopes')
2. In the dialog box where the script is defined: type, to insert a comment line:

// script to calc slope maps in percentages and degrees
3. To use operation InterpolContour to create an interpolated height map from

segment contour lines; type:
%2 = MapInterpolContour(%1,geo)

Perform a contour interpolation on segment map %1, use existing georeference
'geo', and write the output to map %2.
Advanced users may wish to define a georeference corners with a script
command; see Appendices : ILWIS script language (syntax).

4. To use filter dfdx on the interpolated contour map to calculate height differences
in X-direction; type:

%3 = MapFilter(%2, dfdx)
Filter map %2 with the dfdx filter and write the output to map %3.

5. To use filter dfdy on the interpolated contour map to calculate height differences
in Y-direction; type:

%4 = MapFilter(%2, dfdy)
Filter map %2 with the dfdx filter and write the output to map %4.

Table calculation Map & Table Calculation

ILWIS 2.2 Guide 105

6. To calculate a slope map from these, type:
%5 = 100 * HYP(%3,%4) / PIXSIZE(%2)

HYP is an internal Mapcalc/Tabcalc function;
%3 and %4 are the output maps from the filtering;
function PIXSIZE returns the pixel size of raster map %2;
%5 is the output map name of the map containing slope value in percentages.

7. To convert the percentage values into degrees, type:
%6 = RADDEG(ATAN(%5/100))

Function ATAN and RADDEG are internal MapCalc/TabCalc functions.
8. After running the script (see step 9), the output maps will be available as

dependent maps. The expression by which a map is created is stored in the map's
object definition files. The data file for an output map will be calculated when
you double-click an output map in the Catalog.
To have the script calculate the data files for the output maps, you may add the
following lines to your script:

calc %2.mpr
calc %5.mpr
calc %6.mpr

In fact, by adding only calc %6.mpr, all maps, which are part of the process
to calculate map %6 will be calculated as well.

9. To run the script, type on the command line in the Main window:
 run Slopes Contour.mps DEM.mpr DX DY SlopePct SlopeDeg

In script Slopes, %1 is filled out as Contour.mps, %2 as DEM.mpr, %3 as DX,
%4 as DY, %5 as SlopePct, and %6 as SlopeDeg.

Of course, you can also use objects names inside the script instead of parameters %1
(Contour, segment map), %2 (DEM, Digital Elevation Model), etc. For more
information on running scripts, see also How to run scripts.

The result of running this script are maps SLOPEPCT and SLOPEDEG which are
slope maps in percentages and in degrees.

Mind: the following slope values are the same: 30°= 58%, 45°= 100%, 60°= 173%,
80°= 567%. As you see, slope values in the SLOPEPCT map can be greater than
100%.

Additionally, you can prepare representations for both maps with the Representation
Value/Gradual editor.
You can also create two domain Groups to classify both output maps, e.g.:
classes 0-10%, 10-25%, 25-50%, 50-100%, >100% for the slope map in percentages
and
classes 0-6°, 6-12.5°, 12.5-22.5°, 22.5-45°, >45° for the slope map in degrees.

Use these domain groups in the Slicing operation.

Map & Table Calculation Table calculation

106 ILWIS 2.2 Guide

